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The slow-motion theory of nuclear spin relaxation in paramag-
netic low-symmetry complexes is generalized to comprise arbitrary
values of S. We describe the effects of rhombic symmetry in the
static zero-field splitting (ZFS) and allow the principal axis system
of the static ZFS tensor to deviate from the molecule-fixed frame
of the nuclear-electron dipole-dipole tensor. We show nuclear
magnetic relaxation dispersion (NMRD) profiles for different il-
lustrative cases, ranging from within the Redfield limit into the
slow-motion regime with respect to the electron spin dynamics.
We focus on S = 3/2 and compare the effects of symmetry-
breaking properties on the paramagnetic relaxation enhancement
(PRE) in this case with that of S = 1, which we have treated in a
previous paper. We also discuss cases of S = 2, 5/2, 3, and 7/2. One
of the main objectives of this investigation, together with the
previous papers, is to provide a set of standard calculations using
the general slow-motion theory, against which simplified models
may be tested. © 2000 Academic Press
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INTRODUCTION

The conventional theory by Solomon, Bloembergen, anc
Morgan (SBM) 6-9), or rather the modified Solomon-Blo-
embergen (MSB) equationd<3), do not include the static
ZFS interaction. The SBM theory is thus inapplicable to inter-
preting NMRD profiles for low-symmetry complexes unless
the magnitude of the electron spin Zeeman interaction is mucl
larger than that of the static ZFS interaction (i.e., the high-fielc
limit). Strandberg and Westlund.@) have recently modified
the MSB equations to include the static ZFS, and also the
hyperfine coupling to the metal nucleus, but still under the
assumption that the electron spin Zeeman interaction is muc
larger than the static ZFS.

The general slow-motion theory of nuclear spin relaxation in
paramagnetic systems developed by Kowalewski and co-work
ers (L1-19 can handle complexes of any symmetry, for any
electron spinS, at various magnetic fields, and with arbitrary
magnitudes of the different interactions present (e.g., static an
transient ZFS). The slow-motion theory is based on the sto
chastic Liouville equation, using Liouville space superoperatol
formalism (L6, 17), where the nuclear spin system is treated on
a Redfield theory levell8—29, but where the electron spin

The presence of unpaired electrons in transition-metal cosystem is treated together with classical degrees of freedom :

plexes has profound effects on the nuclear spin relaxationaftomposite lattice (see the theory section). We will assum
ligand nuclei, which experience a paramagnetic relaxation ghat the primary mechanism for the electron spin relaxation i
hancement (PRE). The field dependence of the PRE, whichbisdistortional modulation of a transient ZFS interaction due tc
usually presented as a nuclear magnetic relaxation dispersiofiisions with solvent molecules. This mechanism is describe
(NMRD) profile, reveals information about microscopic strucby the so-called pseudorotation model, which may be picture
tural and dynamic properties of the investigated nucleus bag an ellipsoid diffusing on the unit sphere. The mechanism
also indirectly about the electron spin systetr-5). In this related to the static ZFS and the Zeeman interactions modt
paper we are interested in the PRE of ligand protons (e.g.,l&ted by reorientation are also included. Since the magnitude ¢
water molecules) in paramagnetic low-symmetry transitiotihe transient ZFS can, in the present formalism, take any value
metal complexes o = 1, 3/2, 2, 5/2, 3, and 7/2, exchangthis means that the slow-motion theory allows the electron spi
ing rapidly with the bulk. Systems of low symmetry have @elaxation to be outside of the Redfield limit. The extension to
static zero-field splitting (ZFS) interaction present, which ahe slow-motion regime for the electron spin relaxation is
low magnetic field (i.e., when the electron spin Zeeman intgsossible because no electron spin relaxation times are expli
action is weak compared to the ZFS) dominates the characidy defined.
istics of the NMRD profiles. In a previous paper2@), which in the following will be
referred to as paper |, we investigated symmetry-breakin

! To whom correspondence should be addressed. properties forS = 1 complexes. In particular, the effect of
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having a tensor of rhombic symmetry for the static ZFS wasal expression foiS = 1, valid in a ZFS-dominated region
studied. In addition, we discussed the effects of allowing thander the assumption that the static ZFS tensor has rhomb
principal axis system of the static ZFS tensor to deviate froesymmetry.
the molecule-fixed frame of the dipole—dipole tensor betweenSharp and co-workers26-27, 30, 31, 37—40have devel-
the nuclear and electron spins. The influence on the PREapfed a model very similar to the Florence approach. In all thes
having a static ZFS of rhombic symmetry was originally recsimplified theories the Redfield limit for the electron spin must
ognized by Fukuiet al. (24) for S = 1 andS = 3/2, and be fulfilled, which means that the electron spin relaxation times
independently by Shar@9) for S = 1. The physical inter- must not be shorter than the correlation time for the modulatior
pretation of the rhombicity effect was given by Sharp andf the relevant interaction causing the relaxation. These ap
co-workers 2527 for S = 1, S = 3/2, andS = 2. The proaches are in addition restricted to the slow-rotation condi
angular effect due to noncoinciding static ZFS and dipoldien, because they use the decomposition (DC) approximatio
dipole tensors has been discussed earlier in a paper from (ug., separate the reorientational motion from the electron spi
laboratory (5) and by othersZ5, 26, 28-3 dynamics). Sharp and co-workers developed a method, bas
In the present paper, the slow-motion theory is generalized spin-dynamics simulation4), which is free from the
to account for complexes of arbitrary electron sgirSystems slow-rotation requirement. The most serious problem with all
with half-integer spin differ physically considerably from thos¢hese models (except the modified Florence modeBfer 1
with integer spin, whereas differences among half-integer complexes 35)) is, however, that the electron spin relaxation
integer spins separately are relatively small)( The effect of rates are either treated as phenomenological parameters
ZFS rhombicity is for example physically rather different irdescribed using the Bloembergen—Morgan thed®y. The
systems ofS = 1 and of S = 3/2, which we discuss in the slow-motion theory is valid outside of the Redfield limit and
present paper. Westluret al. (14) extended the slow-motion for any rate of molecular reorientation.
theory to include arbitrary electron spin; especially, they dis- This paper is organized as follows. In the next section, the
cusseds = 3/2 andS = 5/2 systems for the extreme case ofieneralized slow-motion theory is briefly summarized. In the
a rigid complex (i.e., no transient ZFS was considered). Wellowing section we present and discuss the results, and fi
show NMRD profiles of various illustrative cases for lownally, the conclusions are drawn in the last section.
symmetry complexes @& = 3/2 (e.g., Cé', Cr*"), where we
notice the same type of effects as in paper I, and we discuss the SLOW-MOTION THEORY
differences from the case & = 1. Although we focus on

complexes of = 3/2, afew cases where we vary the electron Thg sjow-motion theory is briefly summarized, including the

spin S = 1, 3/2, 2, 5/2, 3, 7/2) are also treated. generalization to arbitrary values & Westlund has excel-

There are simplified models beyond the SBM theory that Cahtly reviewed the slow-motion theory quite recenty, @nd
treat low-symmetry complexes, such as the approach devglyera| other papers describing this subject can be found in tr
oped by the Florence group of Bertini and co-workefgerature 8, 11-15, 23, 42-46

(4, 29, 32, 33, which uses the Kubo—-Tomita formalisr4)

and is based on the original v_vqu of Lindne2§|. Very Nuclear Spin Relaxation in Paramagnetic Systems
recently, in a project undertaken jointly by us and the Florence
group, we made use of the slow-motion calculations as aln general, one assumes that the nuclear spin relaxation

“benchmark” and improved the Florence model r= 1 caused by weak coupling to the lattice, which makes the
systems 35) using Redfield theoryl8-22 to obtain a more Wangsness—Bloch—Redfield (WBR) theory or simply the Red
accurate description of the electron spin relaxation. In thield theory (8—-22 appropriate to use for the nuclear spin

slow-rotation limit, very good agreement between the twsystem. The electron spin system, on the other hand, is in tr
approaches was reached. The conce i rotation,mean- slow-motion theory treated together with classical degrees ©
ing reorientation much slower than electron spin relaxatiofreedom (reorientation and distortion) as a composite lattice
should not be confused with the notiongbw motionmean- From the electron spin point of view, the classical degrees o
ing that motions responsible for electron spin relaxation (e.dreedom are “seen” as a thermal reservoir. Within the frame:
distortion, vibration, or even reorientation) are not necessarilyork of WBR theory, it is the interaction between the nuclear
faster than the electron spin relaxation itself. We also achievepgin system, from which we want to extract information, and
a smooth transition from low to high field in the Florencéhe composite lattice, or simply the lattice, that must be put intc
model, when we implemented the Liouville space superopew explicit form. The PRE of ligand protons in a solution of a
tor formalism (6, 17 for the correlation functions. In the sameraramagnetic transition-metal complex is caused by the moc
work, we derived a closed analytical expression for the nucleaation of the hyperfine interaction between the nuclear spin:
spin—lattice relaxation rate in the low-field limit for the case ofnd the unpaired electron spins. This hyperfine interactiol
an axially symmetric static ZFS tensor. Earlier, Westlund hansists of the through-space dipole—dipole (DD) interactior
developed a low-field theory86), resulting in a closed analyt- and the Fermi—contact (or scalar) interaction. Only the DD
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interaction is considered in this paper, although the FermFhe Lattice Dynamics

contact interaction as well as the contribution of interferenceIn the slow-motion theorv. the whole lattice is described
between them can be included in the slow-motion theory. The . . Y . SR
dipole—dipole Hamiltonian is formulated as a contraction cﬁXp“C'tly’ which makes. the correlation f“.”C“OT‘ in Eq. [3]
nuclear spin operators,, and the lattice operatorB;, both .ependent not only on tlme but alsq on orientation. The f“T‘C'
operators expressed as standard rank-one irreducible ter%?@ral form of the equation of motlop for the puclear spin
operators 47). The components of the lattice operator ar stem now changes from the Redfield equation of motior

written as a scalar contraction of a standard rank-one irred |Cn_cludes only time dependence) to the stochastic Liouville

ible spherical tensor operator for the electron spin, with co guation (includes both time and orientation depender} (

ponentsSL, and the Wigner rotation matrix of rank two (with’ 1). The major advantage of the slow-motion formalism is that

) . . . it provides a platform for describing electron spin dynamics
elementsDo,, o[ A (V]), which describes the transformation utside the Redfield limit. The assumption of the pseudorota

from the molecule-fixed frame (M frame) to the Iaborator? ; ; L ! .
( ) ional modulation of the transient cylindrical ZFS is certainly

frame (L frame) through the set of Euler anglBy, . The an oversimplification of a highly complex reality (to get a hint
Wigner rotation matrix describes the orientation of the dipole= P gnly P eallty (1o get.
n the ZFS power spectrum from an atomistic description, se

dipole tensor with respect to the external magnetic field, Whi?ﬂe work of Odeliuset al. (52, 53). However, the pseudoro-

defines the direction of theaxis of the laboratory frame. The, . ) . .
iﬂonal model is computationally viable; it hopefully captures

T} also contain the electron-nuclear dipole—dipole couplin sential phvsics. and it allows meaninaful comparison witt
constantC®® and thus the distand® between the nuclear spin ", pnysICS, giul comparison wi
impler methods. In the present model the lattice Liouvillian is

gir:/de ntTr? Ff):\g::nlégnetlc center. The relevant equations W%(ra(?ine d by the terms
By using Redfield theory and Liouville space superoperator

formalism (L6, 17 we obtain the expression for the nuclear PL=Ls+ Lrt+ Lot Lo+ Lirs [4]

spin—lattice relaxation rate of ligand nuclei bound to the para-

magnetic site as the real part of the complex spectral densithere the first term{s, is the Liouville superoperator gener

taken at the nuclear spin Larmor frequency: ated by the electron spin Zeeman Hamiltonidn,= oS, (the
sign of the electron spin Larmor frequenwy is taken to be the
Tyt = 2 Re[K 2 (—w)}. [1] Sameas that for the magnetogyric ragipby convention). The

terms¥; and ¥, are Markov operators describing the melec
. . _ ular reorientation (R) and distortion (D) of the complex as
The spectral density in Eq. [1] is given by the Fourier-Laplaggqropic rotational and pseudorotational diffusion, respec
transform tively. These operators include the characteristic reorienta
tional correlation timerg and distortional correlation time,,

° _ both corresponding to rank-two spherical harmonics. The las
K(—ow) = J G2(—7)e " dr, [2] two termsin Eq. [4] describe the coupling between the electror
0 spin system and the classical degrees of freedom (the therm

reservoir). Both Liouvillians are generated by the correspond
ing Hamiltonians. Clearly, at any instant, there is only one
single ZFS Hamiltonian or Liouvillian. The two terms in Eq.
[4] reflect the assumptions that the modulation of the ZFS
occurs on two time scales. The teffis.s describes the static
ZFS interaction, which is averaged over the fast processe
(vibrations, collisions) and is subject to rotational modulation.
The autocorrelation function in Eq. [3] contains the lattic&he static ZFS has a strong influence on the energy-level fin
operatorsT;, the lattice density operato#®), pi®, which is structure, especially at low magnetic fields. The te#ifs
assumed to be in thermal equilibrium at all times, and thdescribes the transient ZFS interaction. The transient ZFS he
lattice Liouville superoperatoff, (lattice Liouvillian), which its origin in the distortions of the paramagnetic complex, due tc
determines the time evolution of the system. The expressioollisions with the surrounding solvent. Its dynamics is mod-
for the nuclear spin—spin relaxation rate is obtained in the samled as a pseudorotational diffusion. As seen from the molec
way (not shown), but includes the spectral density taken at zerar frame, the static and transient ZFS represent the mean ai
frequency as well. We will only consider the case of nucledine spread, respectively, of the total ZF&6), Under the
spin—lattice relaxation in the present paper. The results atenditions of slow reorientation, the pseudorotational modula
tained this far are very general; in order to come to computden of the transient ZFS becomes the dominating mechanisr
tionally useful equations we need to specify the lattice dynarfor the electron spin relaxation. The static ZFS and the Zeema
ics. interaction which are both modulated by reorientation of the

where the autocorrelation function for the lattic®{?(7), is
given by

GPI(—7) = Tr{Ti'e " Tipd. (3]
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complex can, if the reorientational motion is sufficiently rapidg
affect the electron spin relaxation. This was pointed out in
paper I; in addition, Abernathy and Sharp discussed this effect,
using spin-dynamics simulation methods, for the cases Whﬁﬂ
reorientation is faster than electron spin relaxatiém).( B

NILSSON AND KOWALEWSKI

The Hamiltonians of the static and transient ZFS have be&h
given in Paper |. Briefly, both Hamiltonians contat,,
components of a standard rank-two irreducible spherical ten&or
operator for the electron spin and components of the static and
transient ZFS tensor, respectively. In addition, each of the
Hamiltonians contains two sets of Wigner rotation matrix

elements. One of the sets is common in both operators:
DZ.[Qw. (t)] describe the transformation from the M to the L

frame. The second set of Wigner matrix elements in the static
ZFS Hamiltonian, D/ [Qs.] describes the transformation

from the principal axis system of the static ZFS tensog (FM%

frame) to the M frame. In the transient ZFS Hamiltonian, thes¥
are replaced by, [Qp u(t)], describing the transformation
from the principal axis system of the transient ZFS tenser (P
frame) to the M frame. The difference between the two sets 6f
Euler angles is tha€y = (ap, Br, 0) are treated as time-
independent parameters having the simple relation with the
spherical polar angleg and ¢ so thatap, = ¢ and B, = 6.
These angles define the orientation of the dipole—dipole tensor

with respect to the principal axis system of the static ZF%’
tensor.

It is customary to define the symmetric and traceless ZFS
tensor in terms of the axial)) and rhombic E) parameters
(54). The relations between the irreducible spherical compo-
nents of the two ZFS tensor and their axial and rhombic

5D

b

1+3/2) —

[£1/2) —

d

[£5/2) —g———

[£3/2) —fF——

4D

l1/2) —F——.

[£7/2) —x—

[+£5/2) —f——

6D

parameters can be found in Paper . 12)
We only consider quadratic terms in the static and transient
ZFS Hamiltonians. Thus, we neglect quartic terms that appear
for S > 3/2 as well as higher-order terms that appear for thg, HHQ/
lanthanides whei$ > 5/2. These are, anyway, usually veryy, ¥~
small and are not believed to contribute much to the nuclear
spin relaxation compared to the quadratic ter@sl@), unless
the quadratic terms vanish by symmetry. For example, both theg 1. Energy-level fine structure showing the splitting of Smanifold
axial and rhombic quadratic terms do vanish for complexes @fe to zero-field splitting (ZFS) of axial (left-hand side) and rhombic (right-
octahedral symmetry, and if the ion has an orbital S state (i.eand side) symmetry for: (& = 1, (b)) S= 3/2, (c)S = 2, (d)S = 5/2,
L = 0) as ground state [e.g., Mn (S = 5/2)], then theS (e)S= 3, and ()S= 7/2. Some qf the splittings are givgn in terms of the
manifold is split by only quartic term$4-56. In some S state ifesd?:gg:;eﬁ fhn: :Z’ffg:ntgiizg.n statéls) as defined in the axial case
lanthanide complexes (e.g., &dcomplexes,S = 7/2) of
octahedral symmetry, quartic as well as sixth-order terms can
split the S manifold (64 -56. Quartic terms can also be impor-energy levels caused by the rhombicity in the static ZFS diffel
tant if only the rhombic quadratic term vanishes, which Abecompletely between half-integer and integer spin, and this i
nathy et al. (27) discussed concerning a complex with ¥n illustrated in Fig. 1 for the cases &= 1, 3/2, 2, 5/2, 3, and
(S = 2) of trigonal symmetry. 7/2. We have indicated in Fig. 1 some of the splittings in terms
of D andE.
In complexes with an axially symmetric ligand field (e.g.,
D, or D;) for S = 1, the energy levels consist of one singlet
The static ZFS dominates the energy-level fine structureamd one doublet, and the triplet is thus split by the axial
the low-field limit, and the symmetry of the ligand field at theomponenD (left-hand side in Fig. 1a). The degeneracy of the
paramagnetic site influences the splittings. The effects on then-Kramers doublgtt 1) is split in the first order witlE #

o

137 —F——"

~~~~~

l+1/2) —¥—o

Energy-Level Splittings for & 1
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0 for ligand fields of symmetry lower than tetragonal or trigodifference between these integer spin systems is important fc
nal, as is shown on the right-hand side in Fig. 1a. This notiie PRE (see Results and Discussion).
Kramers doublet is thus split byE2

For complexes o5 = 3/2 in a ligand field of axial sym- Computational Method
metry, the quartet is split by the axial term in such a way that
the energy levels are grouped into two Kramers doublets (left-In order to evaluate the spectral density at thg ngclear sph
hand side in Fig. 1b). The Kramers doubletsl) and|= 3) are Larmor frequency (cf. Eq. [2]), we need to obtain its matrix
not split by the rhombic term, independently of the symmetfhgPresentation, V‘l’h'Ch is produced by expanding the lattice
of the ligand field. This phenomenon, which occurs in affnsor operators, in an orthonormal basis set defined in the
half-integer spin systems, is called the Kramers degeneracy-iRuVille space. The Liouville basis set and the projection

is related to time-reversal symmetry and can only be lifted if AfCtOrs used in this work are the same as those given i
external magnetic field is applie®4-56. In the low-field ~\PPeNdix A of paper |. Once we have set up the supermatri

limit, only a second-order effect due the rhombic term i — (L + 1) (the matrix elements which are different for

generated by making a contribution to the axial splitting pdle S > 1 than forS = 1 are given in 'the Appgndlx), the.
tween these Kramers doublets, which is illustrated on t mputgﬂonal problem gmounts o taking thg inverse of it
right-hand side in Fig. 1b. The Kramers doublets in the case 'y ich y|eld§ the expression for the nuclear spin-lattice refax
rhombic symmetry consist of mixed states involvidgand ation rate with arbitrary electron spi
|- 3), as well ag— 3) and 3).

For complexes 06 = 2 andS = 3 in an axially symmetric T.i'=3(CPP)23(S+ 1)Re{ciM ~'c }. (5]
ligand field, the multiplets are split in the first order by the axial
term into one singlet and twoS(= 2) or three § = 3) N .
non-Kramers doublets, which is shown to the left in Figs. 1 ecause the prOJect|_on vect.omsonly contain three non-zero
and le. The degeneracy of the non-Kramers doditlg} is for elements for the DD interaction (see paper 1), % 3 fragment
S = 2 split by &E. For S = 3, the corresponding first-orderOf the inverse supermatrid * is sufficient. The supermatrix

splitting in a ligand field of rhombic symmetry is E2 How- M is sparse, and the size of it, which in principle is infinitely

ever, because of the second-order effects, the splitting betwle%rlge due fo the classical degrees of freedom, depends on t

the second- and third-lowest energy levels $or 3 is larger convergence properties in the inversion routine. The inversiol

) . N of M is performed numerically by means of the Lanczos
tsf:)?elfn. d-l;rr:grgf); e;essg%r; ;Oorttshrf) sptht;lr::g 'Slgatrnefracc:?Tobrirélgorithm 67). The size of the supermatrix is increased step by

! rew witin F1g. 1€ ’ r%?ep until convergence of the desired accuracy is accomplishe
maximum rhombicityE/D = 1/3, thesplitting increases by

The dimension of the supermatrix f& = 3/2 is much
nearly 40%. The degeneracy of the non-Kramers doui2t I than fors = 1 tv due to the i f1h .
is for both S-values also lifted in a ligand field of rhombic arger than fo » MOstly due 1o the Increase of the spin

i ) space. For systems wit8 = 1, the dimension was about
symmetry, but only in second order, as a result of the dlffereﬂt),000>< 10,000 at the most (see paper I), but for systems witt

mixing between théd) and the+ 2) states. The splitting due 105 — 3/2 a dimension of about 40,000 40,000 is necessary
the rhombic ligand field is shown to the right in Figs. 1c and 1€, order to reach convergence (these values correspond to t
A splitting in first order of the non-Kramers doublet2) can most general situation whef # 0). The principal quantum
occur if the quartic term in the static 'ZFS Hamiltonian i$,ymbersA andL of the basis operators (see Paper 1), corre-
included (not shown), which has been discussed by Sharp apfinding to the isotropic pseudorotational diffusion and the
co-workers g7). S _ rotational diffusion, respectively, determine the dimension,
For complexes o6 = 5/2 andS = 7/2 in a ligand field of ogether with the electron spin part. The dimension Sox
axial symmetry, the multiplets are split in the first order by thg;2 \which we mentioned above, corresponds\te= 4 and
axial term into three or four Kramers doublets, which is shown = 12 whereas fos = 1 the valuesA = 4 andL = 8 have
to the left in Figs. 1d and 1f. The Kramers doublets are not spiten used. The number of non-zero matrix elements, which i
in a rhombic ligand field, for the same reason asSor 3/2 the real factor that determines the speed of the progran
(i.e., Kramers degeneracy). The rhombic term produces a sggreases from about 400 thousand$o+ 1 to approximately
ond-order contribution to the axial splitting, which is shown t@our million for S = 3/2 when6 # 0. In Table 1 we have
the right in Figs. 1d and 1f. collected the dimension (denoted DIM), the number of non-
The impact of the different features when# 0 for integer zero matrix elements (denoted NEL) for the case when 0,
and half-integer spins on the NMRD profiles is discussed in th@d the corresponding values of the principal quantum num
following section. Note, for example, that the splitting betweelvers (A andL) for S= 1, 3/2, 2, 5/2, 3, and 7/2 in the case
the two lowest energy levels f@ = 2 andS = 3 becomes of large static ZFSAs = 10 cm ). For small static ZFS, a
rather small if the symmetry of the static ZFS changes froemaller value ol may suffice, which reduces the dimension.
axial to rhombic. This is not the case f& = 1, and the Moreover, the value of NEL is reduceddf= 0. It is clear from
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TABLE 1 The azimuthal anglé is set to zero in all cases (according to

Dimension of the Supermatrix (DIM), Number of Non-zero test calculations, the effects of varying that angle are rathe
Matrix Elements (NEL), and Corresponding Values of Aand L for  small). The polar angled has profound effects ir§ = 1

Various S under the Condition of Large Static ZFS (As = 10cm™) systems (see paper ) when we vary it between the values 0

and for 6 # 0 45°, and 90°, and this is discussed also$or 3/2 systems.
S A L DIM NEL The square of the magnitude of the static Z&§,is defined as
the sum of the squared diagonal components of the static ZF
1 4 8 10,000 4<10°  tensor, for which we use the values 1 and 10 trithe relation
312 4 12 40,000 «10°  petweems and the tensor componerids andEgis A2 = 2D3
2 4 12 60,000 %10 4 2E2 For the raticE/Ds we use the values 0, 0.1, ah(the
7 S+ S i by
5/2 4 12 90,000 & 10 . . .
3 4 12 120,000 %10 Maximum possible) so as to keep the magnitude constant. F
712 4 12 150,000 x 100 Asequalto 1 and 10 ci we havew, m equal to 11 and 110,

respectively ¢, corresponds tads but in units of rad/s), and
from this we can immediately see that we are outside of the
) ) _ _strong narrowing condition, or Redfield limit (corresponding to
Table 1 that, as the spin system increases, the dimensigns; < 1) with respect to the static ZFS. The magnitude of the
increasg markedly. F_or the convergence tests and most of thgysient ZFS A+, is defined in analogy with the static ZFS.
production computation of the NMRD profiles, we have use§ince we concentrate on the cylindrically symmetric transien
parallel computers (IBM SP2). Only in some cases was Z’FS, we have here the relatid® = 2D2 We use the values
possible to use an ordinary PC (two 180 MHz Pentium prey5 and 10 cm' for the magnitude\; in all cases. FoA; equal

cessors) with extended RAM memory (512 MByte). to 0.5 and 10 cm' we havew, 7, equal to 0.4 and 8, respec
tively. From this we see that the former case is within the
RESULTS AND DISCUSSION Redfield limit (corresponding te,, 7, < 1), and the latter is in

S ] the slow-motion regime with respect to the transient ZFS.
The results presented in this section refer to the nuclear spifye yse the same terminology as in paper I, where the

relaxation rate in the paramagnetic complex. We assume fasity sical interpretation is given in terms of the different param-
exchange conditionsl(2) and neglect the outer-sphere relaxéters:slightly asymmetric complexhenAs = 1 cm % asym
ation (the influence of the paramagnetic ion on the relaxation 9ftic complexvhenAg = 10 cm*; weakly deformable com

water protons outside of its first coordination sphere). UndEefexwhen A; = 0.5 cm%; highly deformable complewhen
these conditions, the measured ligand proton relaxation ra S= 10 cm % no rhombicitywhenE4/Ds = 0; intermediate

and the relaxation rate in the paramagnetic complex are givﬁﬂ)mbicity when E4/Ds = 0.1 large rhombicity when E4/
as Ds = &; coinciding axesvhen# = 0 and¢ = 0.
We now turn to the discussion of a series of different cases
Ti'(para — Ti'(dia) = Tp= PuqTy, [6] In the first two sections we show the effects on the NMRD
profiles when we vary the parametérg Es/D, A, and6 for
whereT, *(para) is the relaxation rate of the ligand proton in & = 3/2. One of the sections deals with cases correspondin
paramagnetic solutior;; *(dia) is the corresponding rate in ato the Redfield limit with respect to the transient ZFS (i.e.,
diamagnetic solution, and;; is the PRE.P,, is the mole A; = 0.5 cm™). In the other section we cover a selection of
fraction of the transition-metal complex, anqdis the coordi- cases within the slow-motion regime (i.4; = 10 cm ). We
nation number (i.e., number of ligand molecules in the conshould point out that in paper | we showed NMRD profiles for
plex). Since the producP,q is just a constant, we mayS = 1 near the Redfield limit, which correspondsAe = 1
arbitrary set it equal to 10 to obtain the PRE in units of m& cm™*. The corresponding NMRD profiles in the caseS#
In this particular case we cdll,* for PRE, which is displayed 3/2, however, have characteristics very similar to those withir
as a function of the magnetic field in the NMRD profiles. the Redfield limit. Thus, we choose not to show or discuss
In this section we present a large number of calculatékdem. In the next section we discuss the features in the NMRI
NMRD profiles which illustrate various types of systems witlprofiles due to different values of the electron sp$= 1,
respect to symmetry and deformability. Some of the paran®-2, 2, 5/2, 3, and 7/2). We also show in the first section (i.e.
ters are held fixed throughout all cases, at the values usednithin the Redfield limit) the calculated NMRD profile corre-
Paper | for Ni(ll), S = 1 systems. For the nuclear spin-sponding to the SBM theory using the same parameter value
electron spin distancey, the value 255 pm is used. For theas those used in the slow-motion calculations (note, howeve
correlation times,r, (corresponding to the distortional mo that the static ZFS is absent in the SBM theory). In addition, we
tion), we use the value 4 ps, whilg, (corresponding to the have also tried to fit the SBM theory to two of the slow-motion
reorientational motion) is assigned a value of 60 ps. Theofiles (the curves corresponding Bp; values of 1 and 10
electronicg-factor is set to 2.25 and is assumed to be isotropicm * and no rhombicity).
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4500 ers doublet byws when the external magnetic field increases.
400} o The second important feature, different in the cas8 ef 3/2
30f  Ep=0 " andS = 1 systems, concerns the rhombicity effect. Increasinc

s s

the rhombicity in Fig. 2 has the effect of reducing the PRE
substantially in the low-field region (less than about 10 Tesla)
but not as drastically as fd8 = 1 complexes (cf. paper 1),

where the rhombicity effect completely quenches the dipole-
dipole coupling and reduces the PRE practically to zero. The
reason for the smaller effect in ti& = 3/2 case is that the

rhombic term in the static ZFS Hamiltonian only affects the
ot axial splitting between the Kramers doublets in second ordel

300
E,/Dy= V10
250

E,ID;=173

200

PRE (ms)

150

100

50

0.01 0.1 } 10 wo  and the Kramers doublets themselves remain degenerate (s
Magnetic Field (Tesla) Fig. 1). We can also see that the rhombicity affects the twc

plateaus in a somewhat different way. The region to the righ
ab'I:eI((i 2. ONSMCF:nl?l)p(r:?)frirIﬁ)SIef;(; :zémm;tgcﬁh:mlc?e‘;”;% ‘:‘éi?\':g’icc:;f?r:r:‘he of the first plateau (about 0.1-10 Tesla) is more sensitive to th
static ZTFS EJ/Dy) at the angled = 0°. No rhombicity in the transient ZFS rhompwny effect Fhan thEt region to. the left. We have the
(E+/D; = 0) and¢ = 0°. The dashed curve corresponds to the SBM theodP!lOWINg explanation of this observation. We can recall from
using the same parameters as for the slow-motion calculations, except i@ work onS = 1 that the drastic effect of the rhombicity
static ZFS is absent. The dotted curve corresponds to a fitting of the SBMuld be explained by the suppression of the unique quantize
theory to the slow-motion profile whe,/Ds = 0 (obtained best-fit param tjon axis and the permanent magnetic moment of the electro
eters are given in Table 2). in the rhombic case. The situation f8r= 3/2 is in this respect
more complicated. The quantization of the electron spin withir
] , . the|* }) levels differs considerably from that within the 3)
Before moving on to the examples, we wish to provide Q6|5 7). In the former case the quantization axis is oriented

qualitative picture of the field-dependence of the PRE. |§ yhe direction of the external magnetic field, which means

qualitative terms, the shape of a NMRD profile can be consighat 5 quantization axis can still be defined irrespective of the

ered to arise from a series of Lorentzian curves, characterizs%qnmetry of the static ZFS, which is different from tBe= 1

by different “correlation times” and frequencies. The frequen; o (cf. paper I). The quantization in the2 subsystem
cies are related to the energy level structure. The “correlatigiy 4 es in the same way as for integer spins, which means th
times” are influenced (sometimes even dominated) by electrgp, quantization axis is defined in the molecule-fifadrame
spin relaxation and can be field-dependent. In the presencq)my for axially symmetric complexes. Now, in the rhombic
static ZFS, we do not expect any field-dependence of the PREGe the states within one Kramers doublet are mixed witl
at very low fields (weak Zeeman interaction): the changes gfose of the other Kramers doublet. This means that the elec
the characteristic frequencies and “correlation times” of e, gnin zeeman interaction affects the axial splitting, which

SyStem with the magnetic field are negllglble When the ﬁe@ves rise to a different field dependence of the PRE whel
increases and the product of a “correlation time” with thEs # 0 than wherEg = 0.

c'orres'ponding frequency'becomes cloge to unity, the Lolrent-I:Or comparison purposes, we also show in Fig. 2 (dashe
zian disperses and there is a decrease in the NM‘BD profileiAe the calculated profile corresponding to the SBM theory
fise in the NMRD profiles can take place if the “correlationging the same parameter values as for the slow-motion ca
time” increases, which normally occurs because the electrofations, but without static ZFS since it is not included within
spin relaxation slows down at high field. the SBM theory. The difference in the profiles between the
. - i NV 5, SBM and slow-motion theories is striking. The main reason for
Cases for S= 3/2 within the Redfield LimitX; = 0.5 cm ") the poor agreement is that static ZFS has a very large impact c
Asymmetric and weakly deformable complexeBhe the electron spin relaxation, which is not taken into accoun
NMRD profiles in Fig. 2 (solid lines) show the effect ofwithin the SBM theory. This effect is discussed in another
increasing the rhombicity in the static ZFS when the afigke paper by us%8), where a low-field limiting theory in closed
zero for the case of asymmetric (large static ZFS), weakaynalytical form for high-spin systems has been developed. Th
deformable (small transient ZFS) complexes. dotted curve in Fig. 2 corresponds to a fitting of the SBM
The first feature that we wish to point out as distinguishintpeory to the slow-motion profile whefie/Ds = 0. Clearly,
theS = 3/2 systems fron$ = 1 is the occurrence of a “doublethe SBM theory is not even close in predicting the functional
plateau” in the low-field regime in the absence of rhombicitform of the slow-motion profile, and the best-fit parameters,
This “double plateau” structure was noticed by Westlehdl. which are given in Table 2, are badly off.
(14) in their work on half-integer spins in rigid complexes. It The NMRD profiles in Fig. 3 show the effect of increasing
was then assigned to lifting the degeneracy in|thé) Kram- the angled when the rhombicity in the static ZFS is zero for the
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TABLE 2 160 -

Nonlinear Least-Squares Fitting of the SBM Theory to the
Calculated NMRD Profiles Obtained Using the Slow-Motion
Theory in Figs. 2 and 4 (As = 10 cm™ and Ag = 1 cm™, 120L
Respectively) for E/Ds = 0

1401

)
@ 100}
SBM é
a 80
Slow-motion As=10cm* As=1cm’ = el
R (pm) 255 256 252 w0l
Tr (PS) 60 76 52
75 (PS) 4 1.3x 10°° 2.6 20 , . . . .
Ar (cm™) 0.5 0.51x 10°° 0.34 0.01 0.1 1 10 100
v - 0.30398 0.09915 Magnetic Field (Tesla)
Note.The symbolo is the relative standard deviation of the fit. FIG. 4. NMRD profiles for slightly asymmetricAs = 1 cm™), weakly

deformable 4; = 0.5 cm™) complexes of = 3/2 with increasing rhombicity

in the static ZFSE /D) at the angle® = 0°. No rhombicity in the transient
case of asymmetric (large static ZFS), weakly deformabi€s E:/D: = 0) andé = 0°. The dashed curve corresponds to the SBM
(smaII transient ZFS) complexes. theory using the same parameters as for the slow-motion calculations, exce

: : . |4 that static ZFS is absent. The dotted curve corresponds to a fitting of the SBI
Irjcre_asmg the angl@ reduces the PRE in the IOW_fleldtheory to the slow-motion profile wheies/Ds = 0 (Fc))btained best-fi% param
region in the same way as for systemsSof= 1 (cf. paper I). qiers are given in Table 2).

The reduction in the PRE is about the same in the whole

low-field region and thus shows different characteristics in ﬂfi?nited and is not shown. In the remainder of this section we
NMRD profile than the rhombicity effect does (cf. Fig. 2). This . . ' -
distinction is not very pronounced in the caseSf 1 (see wil (?nly discuss the ?ﬁeCt of the anglefor Es = 0.

paper 1), because for integer spin systems the sensitivity to the>!ghtly asymmetric and weakly deformable complexes
rhombicity effect is the same over the whole low-field region,"® NMRD profiles in Fig. 4 (solid lines) show the effect of
as opposed to what we discussed ®r= 3/2 above. The increasing the rhomb|C|t_y in the static ZES when the gr@gke
sensitivity to the angular effect is of course also the same o%&"© for the case of slightly asymmetric (small static ZFS),
the whole low-field region, since we can regard this feature ¥§2Kly deformable (small transient ZFS) complexes.

a scaling of the dipole—dipole coupling strength. For a certa_inThe NMRD profiles in Fig. 4 are rather different from those

range of stronger magnetic fields (about 10—20 Tesla) the safh& 9 2, where the magnitude of the static ZFS is 10 times
trend as forS = 1 is present, namely, that the curve witHarger. First, the dispersion in Fig. 2 at about 10 Tesla is shifte«
largest value of the PRE is that fér= 45° (cf. paper I). to about 1 Tesla in Fig. 4, with the consequence that the firs

Increasing the anglé whenEs # 0 (not shown) does not dispersion and the second plateau (both counted from the left

reveal any new features, but reduces the PRE in the same WAYch were clearly distinguished in Fig. 2, are practically
as in Fig. 3. We have also tested the dependence of the PREZBRENt IN Fig. 4. In fact, the two dispersions shown in Fig. 4 are
the angled for the case of large, rhombic static ZFS and smafimost superimposed on each other, resulting in one rather i

transient ZFS. The variation of the PRE with that angle walispersion. Another interesting difference between the curve
in Fig. 4 and those in Fig. 2 is the large reduction in the PRE

(more than 60%) at very low magnetic fields for the |dwy
compared to the higs. This is also very different compared
to S = 1 systems (see paper |), where the PRE values wer
practically the same at low fields faks values of 1 and 10
cm'. However, a small maximum appeared just before the
dispersion for the larger value of the static ZFS in the case o
S = 1, which is not present ir§ = 3/2 systems. We
tentatively explain these differences betweer 1 andS =
. [ . ] 3/2 systems by differences in the field dependence of electro
0.01 0.1 1 10 100 spin relaxation. A more thorough analysis of the differences ir
Magnetic Field (Tesla) electron spin relaxation effects is discussed in another paper k
. ) ., us 68) on a novel low-field, Redfield-limit theory of PRE.

FIG. 3. NMRDgromes for asymmetrics = 10 cm ), weakly deform Increasing the rhombicity has the effect of reducing the PRE
able A; = 0.5 cm™) complexes ofS = 3/2 with increasing angl® (in o - : )
degrees) at the rhombicitgJ/Ds = 0. No rhombicity in the transient zFs at low magnetic fields, but not at all as much as in Fig. 2. This
(E+/D; = 0) and¢ = 0°. is so especially in the region just to the left of the dispersion,

PRE (1/ms)
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140 which correspond to slow-motion cases. In the slow-motion
regime the electron spin lineshapes are combinations of infi
nitely many Lorentzians, with the consequence that we ar
faced with a broad spectrum of electron spin relaxation times
This feature, which we will refer to as treow-motion effect,
results in very rapid “effective” electron spin relaxation. It
should be stressed that NMRD profiles in the slow-motion
20 Ly . . : . regime showing the effects due to either the variation in the
0.01 0.1 1 10 100 rhombicity in the static ZFS or the variation of the angleave
Magnetic Field (Tesla) never been treated before, and they cannot be handled t
FIG. 5. NMRD profiles for slightly asymmetrics — 1 cm ™), weakly simple theories such as the SBM theory, the Florence model, «
deformable 4 = 0.5 cm*) complexes o6 = 3/2 with increasing anglé (in the approach by Sharp.
degrees) at the rhombicitis/Ds = 0. No rhombicity in the transient ZFS ~ The NMRD profiles in Fig. 6 show the effect of increasing
(E+/Dr = 0) and¢ = 0°. the rhombicity in the static ZFS when the anglis zero for the
case of asymmetric (large static ZRS), highly deformable

which was particularly sensitive to the rhombicity for largdlarge transient ZFS) complexes.
static ZFS. The reason is the same as that discussed abov#creasing the rhombicity reduces the PRE, but not as mark
namely, that the second plateau is absent because the se&shyas for a small magnitude of the transient ZFS (cf. Fig. 2)
dispersion is shifted to the left. However, compared t& = 1 systems, which are practically
The profile in Fig. 4 corresponding to the SBM theorg;ndependent of the rhombicity in the static ZFS in the slow-
(dashed line) agrees poorly with the slow-motion profile evéRotion regime, the change in PRE &= 3/2 systems is not
for a smaller value of the static ZFS paramefey (here, 1 negligible.
cm* as compared to 10 crhused in the curves in Fig. 2). The NMRD profiles in Fig. 7 show the effect of increasing
Note that the SBM curves in Figs. 2 and 4 are the same sirib@ angled when the rhombicity in the static ZFS is zero for the
the only difference in the parameter values is related tocase of asymmetric (large static ZFS), highly deformable (large
change in the magnitude of the static ZFS. The fitting of tHeansient ZFS) complexes.
SBM theory to the slow-motion profileE/Ds = 0) improves  Increasing the anglé reduces the PRE very much in the
somewhat compared to that for a larger valudgfin Fig. 2, same way as in Fig. 3, but not to the same extent. Analogou
but the shape of the curve (dotted line in Fig. 4) and the bestifit the rhombicity effect in Fig. 6, the PRE is much more
parameter values (see Table 2) are still rather different from thensitive to a change in the angldor S = 3/2 complexes
profile and parameter values corresponding to the slow-motithran for those witt§ = 1, in which it is almos®-independent.
theory. The physical reason for the differences betweenShe 3/2
The NMRD profiles in Fig. 5 show the effect of increasingind S = 1 cases, concerning both tifedependence and the
the angle when the rhombicity in the static ZFS is zero for thehombicity effect in the static ZFS, is related to the slow-
case of slightly asymmetric (small static ZFS), weakly defornnotion effect. Thus, the “effective” electron spin relaxation is

able (small transient ZFS) complexes. much more rapid it = 1 than inS = 3/2 systems, because
Increasing the anglé reduces the PRE to about the samgf the Kramers degeneracy in the latter.

extent as for large static ZFS, as shown in Fig. 3. The range of

magnetic fields where the value of PRE is the largestfer

45° has increased compared with Fig. 3. In Fig. 5 it ranges 50

from about 1 to 20 Tesla, whereas in Fig. 3 the range was about 45

10-20 Tesla. Ir§ = 1 systems the opposite trend is true: the R S Ty

case of large static ZFS has the widest range of magnetic fields’e

where the NMRD profile foro = 45° is above thed = 0° é

profile (cf. paper 1). The physical reason for this difference 5 20F

between theS = 3/2 andS = 1 systems is also here g

tentatively related to the difference in electron spin relaxation 10r

and its variation with transition frequencies &g changes. 501 o 1 0 100

Cases for S= 3/2 within the Slow-Motion Regime Magnetic Field (Tesla)

(A; =10 cm?) FIG. 6. NMRD profiles for asymmetricAs = 10 cm'%), highly deform
. . able A; = 10 cm ") complexes o = 3/2 with increasing rhombicity in the
Asymmetric and highly deformable complexe#/e NOW static ZFS E4/D.) at the angled = 0°. No rhombicity in the transient ZFS
discuss complexes with large magnitudes of the transient ZK&/D; = 0) and¢ = 0°.

PRE (1/ms)

a0}
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50 The maximum value the RSD can attain at low field is unity,

:g: when the electron relaxation effects are absent and the onl

sl modulation of the DD interaction originates from the complex
reorientation.

The NMRD profiles in Fig. 8 show the effect of increasing
the electron spirs for the case of slightly asymmetric (small
static ZFS), weakly deformable (small transient ZFS) com-

plexes when the symmetry of the static ZFS is axial (Fig. 8a
001 01 1 10 100 and rhombic (Fig. 8b), and for coinciding axes£ ¢ = 0).
Magnetic Field (Tesla) If we compare the NMRD profiles in Fig. 8a of integer spin
pairwise with those of half-integer spi8,= 1 with S = 3/2,

FIG. 7. NMRD profiles for asymmetricXs = 10 cm %), highly deform S=2withS=5/2 andS = 3 withS = 7/2. we see that
able A = 10 cm*) complexes ofS = 3/2 with increasing angl® (in . ' . . " .
degrees) at the rhombicitigs/Ds = 0. No rhombicity in the transient ZFS the low-field plateaus TOI‘ half'mteg?r Spins are hlgh?f gxcept Ir
(E+/D; = 0) and¢ = 0°. the last case, for which the low-field plateaus coincide. We
note that, with the particular choice of parameters at hand, th
rapid electron spin relaxation phenomena reduce the efficienc

The effect on the PRE of changing either the rhombicity iff the PRE at low field by about 65% f& = 3/2 compared
the static ZFS or the polar anglefor a smallAg is negligible; 0 about 75% for the highest spins. The details of these electro
therefore we do not show any NMRD profiles for these casepin relaxation effects on the PRE will be elaborated in the
The PRE is particularly insensitive to the rhombicity effecorthcoming work on the low-field, Redfield-limit theor8).
where the curves of differeits/D s (not shown) coincide. We Here, we only note that in the simple BM approach the electror
noted similar features fo& = 1 in paper I. The following spin relaxation rates are expected to increase monotonous
physical picture of this phenomenon can be invoked. Since th#h increasingS. This clearly shows that this Zeeman-limit
transient ZFS momentarily dominates over the static ZFS, tHieory is not appropriate for the analysis of high-spin system:
energy-level structure can at each instant be considereditaghe ZFS-dominated regime. The order of the low-field pla-
being determined by the transient rather than the static part!®gus within the integer and half-integer spin systems is th
this picture, the rhombicity in the static ZFS is not expected &#Me; that is, the plateau is reduced wiSeimcreases. How-

significantly affect the PRE.

PRE (m§)

0.40

Comparison of Different Electron Spins 0.35
(S=1, 3/2, 2,5/2, 3, and 7/2) 0.30

0.25
In this section, we discuss the differences between com-2° .
plexes of differentS values, something which has been done g 015
earlier by Sharp for some cases under slow-rotation conditions® ¢
(31). Here we study cases of more rapid reorientation and alsof s
extend the analysis to cover cases with a static ZFS of rhombic3 ¢
symmetry. In another paper by Sharp and co-workary they &
did in fact discuss the rhombicity effect for differeBtvalues §
briefly, but this was again for slowly rotating complexes, and =S o3l =32
they did not show any NMRD profiles illustrating this feature. °

In order to compare the characteristics in the NMRD profiles 020

]
0.01 0.1 1 10 100
0.40

0.351

0.25

for different S in a proper way, we use a reduced spectral 0.15}
density (RSD)K2(—w,), which we define in the following 0.0
way: 0.05|
0.00 T T T r Y
0.01 0.1 1 10 100
~ oo B Ty Magnetic Field (Tesla)
Kl,l(_wl) - (4/3)(CDD)ZS(S+ 1)TR. [7]

FIG. 8. NMRD profiles for slightly asymmetricAs = 1 cm %), weakly
deformable 4; = 0.5 cmi*) complexes with increasing electron sySrat (a)

The division byS(S + 1) in Eq. [7] means that the same factoP° rhombicity in the static ZFSHs/Ds = 0), and (b) with rhombicity in the

. R, . . . static ZFS EgJ/Ds = 1/3). The angled = 0° and¢$ = 0°. Reduced spectral
included inT,, (Cf' Eq. [5]) will cancel; thus, Only differences densities have been used rather than PRE in order to compare NMRD profile

inherent in the electron spin system (e-g:: relaxatiqn aBfldifferent S. Curves with integer spin are displayed as solid lines, whereas
energy-level effects) for variouS are shown in the profiles. those of half-integer spin are shown as dotted lines.
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ever, the reduction of the PRE is larger in the case of halfiain reason for this is that the BM theory breaks down becaus
integer spin systems than in the case of integer spin systenf® strong influence of the static ZFS on the electron spir
In Fig. 8b we show NMRD profiles for variou&in the case relaxation is not taken into account (see the other paper by u
of a rhombic static ZFSE¢/Ds = 1/3). The RSDs are reduced(59)).
in the low-field region for all spin systems compared to the We have also investigated the effect on the PRE, or rather o
case of an axial static ZFS (cf. Fig. 8a). The RSD for int&gerthe RSD, of changing the electron sgBnWe have found that
are reduced more drastically than for half-integer spin systentgeger spin systems behave differently than half-integer sys
because of the Kramers degeneracy in the latter. We discustmds, due to the Kramers degeneracy in the latter, which is i
this phenomenon in a previous section in the casg of 3/2 agreement with what Sharp has discussed in earlier pape
for electron spin relaxation within the Redfield limit, and (27, 31). The order of the low-field plateaus in the case of an
applies to all half-integer spin systems. The order of the lovaxial static ZFS is the same for integer as for half-integer spir
field plateaus of the half-integer spin systems in the rhomhksgstems; that is, the RSD is reduced @s$ncreases. Sharp
case remains the same as in the axial case (cf. Figs. 8a and Bt®dicted a somewhat more pronounced distinction betwee
However, for the integer spin systems the order is reverséateger and half-integer spin systems in the axial case. Th
that is,S = 1 has the lowest PRE ar®l= 3 the highest. The value for As that we have chosen (1 c¢f) in Fig. 8 only
explanation for this is related to the splitting of the two lowestisplays a pronounced distinction betwesr= 3/2 and the
energy levels (see Figs. 1a, 1b, and 1c). This splitting beconwker spin quantum numbers. If we had chosen a larger value
rather small forS = 2 andS = 3 in the case of a rhombic asof Ag, then the profiles of the half-integer spin systems would
compared to an axial static ZFS. This reduction in the splittiftgave been grouped together on a somewhat higher level the
is not as dramatic in the case®f= 1. Increasing this splitting those with integer spin. Clearly, the ordering of the low-field
will produce a reduction in the RSD in a similar way as for thplateaus depends strongly on the magnitude of the static ZF¢
splitting of the non-Kramers doublét-1). Thus, since the which we tentatively trace to the electron spin relaxation prop-
splitting increases in going fro@= 3 toS= 1, the RSD will erties ofS > 1 systems.

be reduced, which is seen in Fig. 8b. In the case of a rhombic static ZFS, the order of the low-field
plateaus for integer spin systems is reversed compared to tt
CONCLUSIONS axial case. This phenomenon is related to the splitting betwee

the two lowest energy levels, which increasesSadecreases

We have shown NMRD profiles where we can investigagind hence produces a smaller value of the RSD. For half
the effect on the PRE of symmetry-breaking properties, integer spin systems the order of the low-field plateaus remain
particular forS = 3/2. We have discussed the differencethe same if the symmetry in the static ZFS is changed.
betweernS = 3/2 andS = 1 systems concerning these effects. The present paper, together with paper |, provides a wide
We find that the rhombicity effect in the static ZFS reduces thhange of cases of calculated NMRD profiles covering feature:
PRE substantially, but not as drastically as o= 1 com- of integer spin, withS = 1 as an example (paper 1), and now
plexes, due to the Kramers degeneracysin= 3/2 systems. also half-integer spin, exemplified with= 3/2. Some cases
The consequence of the Kramers degeneracy is that the rhahS > 3/2 are also discussed in the present paper. Althoug|
bic termEs only produces a second-order contribution to thihis set of NMRD profiles is not complete, it covers practically
axial splitting, which in turn provideS = 3/2 complexes with most of the cases where zero-field splitting is dominating.
a slower electron spin relaxation than ®r= 1. We have also Simplified models may be tested against these NMRD profile:
seen that NMRD profiles are sensitive to the rhombicity effeand may be modified accordingly. One example of this strateg
also in the slow-motion regime, which was not the cas&Sfer is the successful cooperation between the authors and ti
1 (see paper 1). The effect of changing the an@lis rather Florence group that resulted in an improved version of the
similar for S = 3/2 andS = 1 complexes, except in the Florence model with very good agreement in the slow-rotatior
slow-motion regime where the former show a larger changelimit for the case ofS = 1 (35).
the PRE.

NMRD profiles corresponding to the SBM theory have also
been shown and compared with the slow-motion profiles and APPENDIX: SUPERMATRIX ELEMENTS
the disagreement is very pronounced. Even if we fit the SBM
theory to the calculated slow-motion curves the fitted curves doThe supermatrix elements of the static and transient ZF¢
not have the same functional form as those based on theuvillians, £3-s and¥3., are given here, using the orthonor
slow-motion theory. In addition, the best-fit parameter valua@sal basis operators defined in Appendix A of paper |. These
differ substantially from those used in the slow-motion calcisupermatrix elements are valid for an arbitrary valueSpf
lation. Clearly, the SBM theory cannot mimic the low andavhereas those in paper | were restricted to the case-ofl.
intermediate magnetic field parts of the NMRD profiles fofhe supermatrix elements of the other superoperators cor
low-symmetry complexes when static ZFS is present. Thained in the lattice Liouvillian®, are exactly the same as
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those given in Appendix B in paper | and are therefore not

given here.
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in Egs. [A.1] and [A.2] is a 6-j symbol59). If the Liouville
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