
Journal of Magnetic Resonance146,345–358 (2000)
doi:10.1006/jmre.2000.2125, available online at http://www.idealibrary.com on
Slow-Motion Theory of Nuclear Spin Relaxation in Paramagnetic Low-
Symmetry Complexes: A Generalization to High Electron Spin

T. Nilsson and J. Kowalewski1

Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden

E-mail: jk@physc.su.se

Received February 24, 2000; revised May 17, 2000
com
n

n e
ich
rs
uc

b

g.,
tion
g-

e a
h a
te

act

and
lo-
ic
ter-
ess

uch
field
d

the
the

much

n in
ork-

any
e ary
m c and
t sto-
c ator
f d on
a in
s om as
a ume
t n is
b e to
c ibed
b ured
a isms
r odu-
l de of
t alue,
t spin
r n to
t is
p xplic-
i

r king
The slow-motion theory of nuclear spin relaxation in paramag-
netic low-symmetry complexes is generalized to comprise arbitrary
values of S. We describe the effects of rhombic symmetry in the
static zero-field splitting (ZFS) and allow the principal axis system
of the static ZFS tensor to deviate from the molecule-fixed frame
of the nuclear-electron dipole–dipole tensor. We show nuclear
magnetic relaxation dispersion (NMRD) profiles for different il-
lustrative cases, ranging from within the Redfield limit into the
slow-motion regime with respect to the electron spin dynamics.
We focus on S 5 3/2 and compare the effects of symmetry-
breaking properties on the paramagnetic relaxation enhancement
(PRE) in this case with that of S 5 1, which we have treated in a
previous paper. We also discuss cases of S 5 2, 5/2, 3, and 7/2. One
of the main objectives of this investigation, together with the
previous papers, is to provide a set of standard calculations using
the general slow-motion theory, against which simplified models
may be tested. © 2000 Academic Press

Key Words: high-spin systems; paramagnetic; relaxation; slow-
motion; zero-field splitting.

INTRODUCTION

The presence of unpaired electrons in transition-metal
plexes has profound effects on the nuclear spin relaxatio
ligand nuclei, which experience a paramagnetic relaxatio
hancement (PRE). The field dependence of the PRE, wh
usually presented as a nuclear magnetic relaxation dispe
(NMRD) profile, reveals information about microscopic str
tural and dynamic properties of the investigated nucleus
also indirectly about the electron spin system (1–5). In this
paper we are interested in the PRE of ligand protons (e.
water molecules) in paramagnetic low-symmetry transi
metal complexes ofS 5 1, 3/ 2, 2, 5/ 2, 3, and 7/2, exchan
ing rapidly with the bulk. Systems of low symmetry hav
static zero-field splitting (ZFS) interaction present, whic
low magnetic field (i.e., when the electron spin Zeeman in
action is weak compared to the ZFS) dominates the char
istics of the NMRD profiles.
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The conventional theory by Solomon, Bloembergen,
Morgan (SBM) (6–9), or rather the modified Solomon–B
embergen (MSB) equations (1–3), do not include the stat
ZFS interaction. The SBM theory is thus inapplicable to in
preting NMRD profiles for low-symmetry complexes unl
the magnitude of the electron spin Zeeman interaction is m
larger than that of the static ZFS interaction (i.e., the high-
limit). Strandberg and Westlund (10) have recently modifie
the MSB equations to include the static ZFS, and also
hyperfine coupling to the metal nucleus, but still under
assumption that the electron spin Zeeman interaction is
larger than the static ZFS.

The general slow-motion theory of nuclear spin relaxatio
paramagnetic systems developed by Kowalewski and co-w
ers (11–15) can handle complexes of any symmetry, for

lectron spinS, at various magnetic fields, and with arbitr
agnitudes of the different interactions present (e.g., stati

ransient ZFS). The slow-motion theory is based on the
hastic Liouville equation, using Liouville space superoper
ormalism (16, 17), where the nuclear spin system is treate

Redfield theory level (18–22), but where the electron sp
ystem is treated together with classical degrees of freed
composite lattice (see the theory section). We will ass

hat the primary mechanism for the electron spin relaxatio
y distortional modulation of a transient ZFS interaction du
ollisions with solvent molecules. This mechanism is descr
y the so-called pseudorotation model, which may be pict
s an ellipsoid diffusing on the unit sphere. The mechan
elated to the static ZFS and the Zeeman interactions m
ated by reorientation are also included. Since the magnitu
he transient ZFS can, in the present formalism, take any v
his means that the slow-motion theory allows the electron
elaxation to be outside of the Redfield limit. The extensio
he slow-motion regime for the electron spin relaxation
ossible because no electron spin relaxation times are e

tly defined.
In a previous paper (23), which in the following will be

eferred to as paper I, we investigated symmetry-brea

roperties forS 5 1 complexes. In particular, the effect of
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346 NILSSON AND KOWALEWSKI
having a tensor of rhombic symmetry for the static ZFS
studied. In addition, we discussed the effects of allowing
principal axis system of the static ZFS tensor to deviate
the molecule-fixed frame of the dipole–dipole tensor betw
the nuclear and electron spins. The influence on the PR
having a static ZFS of rhombic symmetry was originally
ognized by Fukuiet al. (24) for S 5 1 and S 5 3/ 2, and
ndependently by Sharp (25) for S 5 1. The physical inter
retation of the rhombicity effect was given by Sharp
o-workers (25–27) for S 5 1, S 5 3/ 2, andS 5 2. The

angular effect due to noncoinciding static ZFS and dip
dipole tensors has been discussed earlier in a paper fro
laboratory (15) and by others (25, 26, 28–30).

In the present paper, the slow-motion theory is genera
o account for complexes of arbitrary electron spinS. System
with half-integer spin differ physically considerably from th
with integer spin, whereas differences among half-intege
integer spins separately are relatively small (31). The effect o
ZFS rhombicity is for example physically rather differen
systems ofS 5 1 and ofS 5 3/ 2, which we discuss in th

resent paper. Westlundet al. (14) extended the slow-motio
heory to include arbitrary electron spin; especially, they
ussedS 5 3/ 2 andS 5 5/ 2 systems for the extreme case
rigid complex (i.e., no transient ZFS was considered).

how NMRD profiles of various illustrative cases for lo
ymmetry complexes ofS 5 3/ 2 (e.g., Co21, Cr31), where we

notice the same type of effects as in paper I, and we discu
differences from the case ofS 5 1. Although we focus o
omplexes ofS5 3/ 2, a few cases where we vary the elec
pin (S 5 1, 3/ 2, 2, 5/ 2, 3, 7/ 2) are also treated.
There are simplified models beyond the SBM theory tha

reat low-symmetry complexes, such as the approach d
ped by the Florence group of Bertini and co-work
4, 29, 32, 33), which uses the Kubo–Tomita formalism (34)
nd is based on the original work of Lindner (28). Very
ecently, in a project undertaken jointly by us and the Flore
roup, we made use of the slow-motion calculations
benchmark” and improved the Florence model forS 5 1
ystems (35) using Redfield theory (18–22) to obtain a mor
ccurate description of the electron spin relaxation. In
low-rotation limit, very good agreement between the
pproaches was reached. The concept ofslow rotation,mean

ng reorientation much slower than electron spin relaxa
hould not be confused with the notion ofslow motion,mean
ng that motions responsible for electron spin relaxation (
istortion, vibration, or even reorientation) are not necess

aster than the electron spin relaxation itself. We also achi
smooth transition from low to high field in the Floren
odel, when we implemented the Liouville space superop

or formalism (16, 17) for the correlation functions. In the sam
ork, we derived a closed analytical expression for the nu
pin–lattice relaxation rate in the low-field limit for the case
n axially symmetric static ZFS tensor. Earlier, Westlund

eveloped a low-field theory (36), resulting in a closed analyt- a
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cal expression forS 5 1, valid in a ZFS-dominated regio
nder the assumption that the static ZFS tensor has rho
ymmetry.
Sharp and co-workers (25–27, 30, 31, 37–40) have devel

ped a model very similar to the Florence approach. In all t
implified theories the Redfield limit for the electron spin m
e fulfilled, which means that the electron spin relaxation ti
ust not be shorter than the correlation time for the modul
f the relevant interaction causing the relaxation. These
roaches are in addition restricted to the slow-rotation co

ion, because they use the decomposition (DC) approxim
i.e., separate the reorientational motion from the electron
ynamics). Sharp and co-workers developed a method,
n spin-dynamics simulation (41), which is free from th
low-rotation requirement. The most serious problem wit
hese models (except the modified Florence model forS 5 1
omplexes (35)) is, however, that the electron spin relaxa
ates are either treated as phenomenological paramet
escribed using the Bloembergen–Morgan theory (9). The
low-motion theory is valid outside of the Redfield limit a
or any rate of molecular reorientation.

This paper is organized as follows. In the next section
eneralized slow-motion theory is briefly summarized. In

ollowing section we present and discuss the results, an
ally, the conclusions are drawn in the last section.

SLOW-MOTION THEORY

The slow-motion theory is briefly summarized, including
generalization to arbitrary values ofS. Westlund has exce
lently reviewed the slow-motion theory quite recently (5), and
several other papers describing this subject can be found
literature (3, 11–15, 23, 42–46).

uclear Spin Relaxation in Paramagnetic Systems

In general, one assumes that the nuclear spin relaxat
aused by weak coupling to the lattice, which makes
angsness–Bloch–Redfield (WBR) theory or simply the R

eld theory (18–22) appropriate to use for the nuclear s
ystem. The electron spin system, on the other hand, is
low-motion theory treated together with classical degree
reedom (reorientation and distortion) as a composite la
rom the electron spin point of view, the classical degree

reedom are “seen” as a thermal reservoir. Within the fra
ork of WBR theory, it is the interaction between the nuc
pin system, from which we want to extract information,
he composite lattice, or simply the lattice, that must be put
n explicit form. The PRE of ligand protons in a solution o
aramagnetic transition-metal complex is caused by the
lation of the hyperfine interaction between the nuclear s
nd the unpaired electron spins. This hyperfine intera
onsists of the through-space dipole–dipole (DD) interac

nd the Fermi–contact (or scalar) interaction. Only the DD
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347SLOW-MOTION THEORY IN HIGH-SPIN SYSTEMS
interaction is considered in this paper, although the Fe
contact interaction as well as the contribution of interfere
between them can be included in the slow-motion theory.
dipole–dipole Hamiltonian is formulated as a contraction
nuclear spin operators,I n

1, and the lattice operatorsTn
1, both

operators expressed as standard rank-one irreducible
operators (47). The components of the lattice operator
written as a scalar contraction of a standard rank-one irre
ible spherical tensor operator for the electron spin, with c
ponentsSq

1, and the Wigner rotation matrix of rank two (w
lementsD 0,n2q

2 [VML(t)]), which describes the transformat
from the molecule-fixed frame (M frame) to the laborat
frame (L frame) through the set of Euler anglesVML. The
Wigner rotation matrix describes the orientation of the dip
dipole tensor with respect to the external magnetic field, w
defines the direction of thez axis of the laboratory frame. Th
Tn

1 also contain the electron-nuclear dipole–dipole coup
constantCDD and thus the distanceR between the nuclear sp
and the paramagnetic center. The relevant equations
given in Paper I.

By using Redfield theory and Liouville space superope
formalism (16, 17) we obtain the expression for the nucl
spin–lattice relaxation rate of ligand nuclei bound to the p
magnetic site as the real part of the complex spectral de
taken at the nuclear spin Larmor frequency:

T1I
21 5 2 Re$K 1,1

DD~2vI!%. [1]

he spectral density in Eq. [1] is given by the Fourier–Lap
ransform

K 1,1
DD~2v I! 5 E

0

`

G1,1
DD~2t!e2ivItdt, [2]

here the autocorrelation function for the lattice,G1,1
DD(t), is

given by

G1,1
DD~2t! 5 TrL$T1

1†e2i+LtT1
1r L

eq%. [3]

he autocorrelation function in Eq. [3] contains the lat
peratorsT1

1, the lattice density operator (48), rL
eq, which is

assumed to be in thermal equilibrium at all times, and
lattice Liouville superoperator,+L (lattice Liouvillian), which
determines the time evolution of the system. The expre
for the nuclear spin–spin relaxation rate is obtained in the
way (not shown), but includes the spectral density taken at
frequency as well. We will only consider the case of nuc
spin–lattice relaxation in the present paper. The results
tained this far are very general; in order to come to comp
tionally useful equations we need to specify the lattice dyn

ics. i
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The Lattice Dynamics

In the slow-motion theory, the whole lattice is descri
explicitly, which makes the correlation function in Eq.
dependent not only on time but also on orientation. The f
tional form of the equation of motion for the nuclear s
system now changes from the Redfield equation of mo
(includes only time dependence) to the stochastic Liou
equation (includes both time and orientation dependence)49–
51). The major advantage of the slow-motion formalism is
it provides a platform for describing electron spin dynam
outside the Redfield limit. The assumption of the pseudo
tional modulation of the transient cylindrical ZFS is certa
an oversimplification of a highly complex reality (to get a h
on the ZFS power spectrum from an atomistic description
the work of Odeliuset al. (52, 53)). However, the pseudor
tational model is computationally viable; it hopefully captu
essential physics, and it allows meaningful comparison
simpler methods. In the present model the lattice Liouvillia
defined by the terms

+L 5 +S 1 +R 1 +D 1 + ZFS
S 1 + ZFS

T , [4]

where the first term,+S, is the Liouville superoperator gen-
ated by the electron spin Zeeman Hamiltonian,HS 5 vSSz (the
sign of the electron spin Larmor frequencyvS is taken to be th
same as that for the magnetogyric ratiogS by convention). Th
terms+R and+D are Markov operators describing the mo-
ular reorientation (R) and distortion (D) of the complex
isotropic rotational and pseudorotational diffusion, res
tively. These operators include the characteristic reorie
tional correlation timetR and distortional correlation timetD,
both corresponding to rank-two spherical harmonics. The
two terms in Eq. [4] describe the coupling between the elec
spin system and the classical degrees of freedom (the th
reservoir). Both Liouvillians are generated by the corresp
ing Hamiltonians. Clearly, at any instant, there is only
single ZFS Hamiltonian or Liouvillian. The two terms in E
[4] reflect the assumptions that the modulation of the
occurs on two time scales. The term+ZFS

S describes the stat
ZFS interaction, which is averaged over the fast proce
(vibrations, collisions) and is subject to rotational modulat
The static ZFS has a strong influence on the energy-leve
structure, especially at low magnetic fields. The term+ZFS

T

describes the transient ZFS interaction. The transient ZF
its origin in the distortions of the paramagnetic complex, du
collisions with the surrounding solvent. Its dynamics is m
eled as a pseudorotational diffusion. As seen from the m
ular frame, the static and transient ZFS represent the mea
the spread, respectively, of the total ZFS (46). Under the
onditions of slow reorientation, the pseudorotational mod
ion of the transient ZFS becomes the dominating mecha
or the electron spin relaxation. The static ZFS and the Zee

nteraction which are both modulated by reorientation of the
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348 NILSSON AND KOWALEWSKI
complex can, if the reorientational motion is sufficiently ra
affect the electron spin relaxation. This was pointed ou
paper I; in addition, Abernathy and Sharp discussed this e
using spin-dynamics simulation methods, for the cases
reorientation is faster than electron spin relaxation (41).

The Hamiltonians of the static and transient ZFS have
iven in Paper I. Briefly, both Hamiltonians containS2n

2 ,
omponents of a standard rank-two irreducible spherical te
perator for the electron spin and components of the stati

ransient ZFS tensor, respectively. In addition, each of
amiltonians contains two sets of Wigner rotation ma
lements. One of the sets is common in both opera
m,n
2 [VML(t)] describe the transformation from the M to the

frame. The second set of Wigner matrix elements in the s
ZFS Hamiltonian,Dl ,m

2 [VPSM] describes the transformati
from the principal axis system of the static ZFS tensorS
frame) to the M frame. In the transient ZFS Hamiltonian, th
are replaced byDk,m

2 [VPT M(t)], describing the transformatio
from the principal axis system of the transient ZFS tensoT
frame) to the M frame. The difference between the two se
Euler angles is thatVPSM 5 (aPS, bPS, 0) are treated as tim
independent parameters having the simple relation with
spherical polar anglesu andf so thataPS 5 f andbPS 5 u.
These angles define the orientation of the dipole–dipole te
with respect to the principal axis system of the static
tensor.

It is customary to define the symmetric and traceless
tensor in terms of the axial (D) and rhombic (E) parameter
(54). The relations between the irreducible spherical com
nents of the two ZFS tensor and their axial and rhom
parameters can be found in Paper I.

We only consider quadratic terms in the static and tran
ZFS Hamiltonians. Thus, we neglect quartic terms that ap
for S . 3/ 2 as well as higher-order terms that appear fo
lanthanides whenS . 5/ 2. These are, anyway, usually v
small and are not believed to contribute much to the nu
spin relaxation compared to the quadratic terms (9, 16), unless
the quadratic terms vanish by symmetry. For example, bot
axial and rhombic quadratic terms do vanish for complexe
octahedral symmetry, and if the ion has an orbital S state
L 5 0) as ground state [e.g., Mn21 (S 5 5/ 2)], then theS

anifold is split by only quartic terms (54–56). In some S stat
anthanide complexes (e.g., Gd31 complexes,S 5 7/ 2) of
octahedral symmetry, quartic as well as sixth-order terms
split theS manifold (54–56). Quartic terms can also be imp
tant if only the rhombic quadratic term vanishes, which A
nathy et al. (27) discussed concerning a complex with M31

(S 5 2) of trigonal symmetry.

Energy-Level Splittings for S$ 1

The static ZFS dominates the energy-level fine structu
he low-field limit, and the symmetry of the ligand field at

aramagnetic site influences the splittings. The effects on t
,
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energy levels caused by the rhombicity in the static ZFS d
completely between half-integer and integer spin, and th
illustrated in Fig. 1 for the cases ofS 5 1, 3/ 2, 2, 5/ 2, 3, an

/2. We have indicated in Fig. 1 some of the splittings in te
f D andE.
In complexes with an axially symmetric ligand field (e

D 4 or D 3) for S 5 1, the energy levels consist of one sing
and one doublet, and the triplet is thus split by the a
componentD (left-hand side in Fig. 1a). The degeneracy of

FIG. 1. Energy-level fine structure showing the splitting of theSmanifold
ue to zero-field splitting (ZFS) of axial (left-hand side) and rhombic (r
and side) symmetry for: (a)S 5 1, (b) S 5 3/ 2, (c) S 5 2, (d) S 5 5/ 2,
e) S 5 3, and (f)S 5 7/ 2. Some of the splittings are given in terms of
FS parametersD andE, and the spin statesuMS& as defined in the axial ca
re displayed on the left-hand side.
henon-Kramers doubletu61& is split in the first order withE Þ
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349SLOW-MOTION THEORY IN HIGH-SPIN SYSTEMS
0 for ligand fields of symmetry lower than tetragonal or tri
nal, as is shown on the right-hand side in Fig. 1a. This
Kramers doublet is thus split by 2E.

For complexes ofS 5 3/ 2 in a ligand field of axial sym
etry, the quartet is split by the axial term in such a way

he energy levels are grouped into two Kramers doublets
and side in Fig. 1b). The Kramers doubletsu6 1

2& andu6 3
2& are

not split by the rhombic term, independently of the symm
of the ligand field. This phenomenon, which occurs in
half-integer spin systems, is called the Kramers degenera
is related to time-reversal symmetry and can only be lifted
external magnetic field is applied (54–56). In the low-field
limit, only a second-order effect due the rhombic term
generated by making a contribution to the axial splitting
tween these Kramers doublets, which is illustrated on
right-hand side in Fig. 1b. The Kramers doublets in the ca
rhombic symmetry consist of mixed states involvingu12& and
2 3

2&, as well asu2 1
2& and u32&.

For complexes ofS 5 2 andS 5 3 in an axially symmetri
igand field, the multiplets are split in the first order by the a
erm into one singlet and two (S 5 2) or three (S 5 3)
on-Kramers doublets, which is shown to the left in Figs
nd 1e. The degeneracy of the non-Kramers doubletu61& is for

S 5 2 split by 6E. For S 5 3, the corresponding first-ord
splitting in a ligand field of rhombic symmetry is 12E. How-
ever, because of the second-order effects, the splitting be
the second- and third-lowest energy levels forS 5 3 is large
than 12E. The expression for this splitting is rather cumb
some, and therefore we do not show it in Fig. 1e. In fact, fo
maximum rhombicityE/D 5 1/3, thesplitting increases b
nearly 40%. The degeneracy of the non-Kramers doubletu62&
is for both S-values also lifted in a ligand field of rhomb
symmetry, but only in second order, as a result of the diffe
mixing between theu0& and theu62& states. The splitting due
the rhombic ligand field is shown to the right in Figs. 1c and
A splitting in first order of the non-Kramers doubletu62& can
occur if the quartic term in the static ZFS Hamiltonian
included (not shown), which has been discussed by Shar
co-workers (27).

For complexes ofS 5 5/ 2 andS 5 7/ 2 in a ligand field o
axial symmetry, the multiplets are split in the first order by
axial term into three or four Kramers doublets, which is sh
to the left in Figs. 1d and 1f. The Kramers doublets are not
in a rhombic ligand field, for the same reason as forS 5 3/ 2
(i.e., Kramers degeneracy). The rhombic term produces a
ond-order contribution to the axial splitting, which is show
the right in Figs. 1d and 1f.

The impact of the different features whenE Þ 0 for intege
and half-integer spins on the NMRD profiles is discussed i
following section. Note, for example, that the splitting betw
the two lowest energy levels forS 5 2 andS 5 3 become
rather small if the symmetry of the static ZFS changes

axial to rhombic. This is not the case forS 5 1, and the
-
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difference between these integer spin systems is importa
the PRE (see Results and Discussion).

Computational Method

In order to evaluate the spectral density at the nuclear
Larmor frequency (cf. Eq. [2]), we need to obtain its ma
representation, which is produced by expanding the la
tensor operatorsTn

1 in an orthonormal basis set defined in
Liouville space. The Liouville basis set and the projec
vectors used in this work are the same as those give
Appendix A of paper I. Once we have set up the superm
M 5 i (L L 1 v I1) (the matrix elements which are different
the S . 1 than for S 5 1 are given in the Appendix), th
omputational problem amounts to taking the inverse o
hich yields the expression for the nuclear spin–lattice re
tion rate with arbitrary electron spinS:

T1I
21 5 4

3 ~CDD! 2S~S1 1!Re$c*1M
21c1%. [5]

Because the projection vectorsc1 only contain three non-ze
elements for the DD interaction (see paper I), a 33 3 fragmen
of the inverse supermatrixM 21 is sufficient. The supermatr
M is sparse, and the size of it, which in principle is infinit
large due to the classical degrees of freedom, depends o
convergence properties in the inversion routine. The inve
of M is performed numerically by means of the Lanc
algorithm (57). The size of the supermatrix is increased ste
step until convergence of the desired accuracy is accompli

The dimension of the supermatrix forS 5 3/ 2 is much
larger than forS 5 1, mostly due to the increase of the s
pace. For systems withS 5 1, the dimension was abo
0,0003 10,000 at the most (see paper I), but for systems
5 3/ 2 a dimension of about 40,0003 40,000 is necessa

n order to reach convergence (these values correspond
ost general situation whenu Þ 0). The principal quantum

numbersA and L of the basis operators (see Paper I), co
sponding to the isotropic pseudorotational diffusion and
rotational diffusion, respectively, determine the dimens
together with the electron spin part. The dimension forS 5

/ 2, which we mentioned above, corresponds toA 5 4 and
L 5 12, whereas forS 5 1 the valuesA 5 4 andL 5 8 have
been used. The number of non-zero matrix elements, wh
the real factor that determines the speed of the prog
increases from about 400 thousand forS5 1 to approximatel
four million for S 5 3/ 2 whenu Þ 0. In Table 1 we hav
collected the dimension (denoted DIM), the number of n
zero matrix elements (denoted NEL) for the case whenu Þ 0,
and the corresponding values of the principal quantum n
bers (A andL) for S 5 1, 3/ 2, 2, 5/ 2, 3, and 7/2 in the ca
of large static ZFS (DS 5 10 cm21). For small static ZFS,
smaller value ofL may suffice, which reduces the dimens

Moreover, the value of NEL is reduced ifu 5 0. It is clear from
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350 NILSSON AND KOWALEWSKI
Table 1 that, as the spin system increases, the dimen
increase markedly. For the convergence tests and most
production computation of the NMRD profiles, we have u
parallel computers (IBM SP2). Only in some cases wa
possible to use an ordinary PC (two 180 MHz Pentium
cessors) with extended RAM memory (512 MByte).

RESULTS AND DISCUSSION

The results presented in this section refer to the nuclea
relaxation rate in the paramagnetic complex. We assume
exchange conditions (1, 2) and neglect the outer-sphere rel
ation (the influence of the paramagnetic ion on the relaxati
water protons outside of its first coordination sphere). U
these conditions, the measured ligand proton relaxation
and the relaxation rate in the paramagnetic complex are
as

T1
21~para! 2 T1

21~dia! 5 T1,P
21 5 PMqT1I

21, [6]

whereT1
21(para) is the relaxation rate of the ligand proton

aramagnetic solution,T1
21(dia) is the corresponding rate in

diamagnetic solution, andT1,P
21 is the PRE.PM is the mole

fraction of the transition-metal complex, andq is the coordi
ation number (i.e., number of ligand molecules in the c
lex). Since the productPMq is just a constant, we ma

arbitrary set it equal to 1023 to obtain the PRE in units of ms21.
In this particular case we callT1I

21 for PRE, which is displaye
as a function of the magnetic field in the NMRD profiles.

In this section we present a large number of calcul
NMRD profiles which illustrate various types of systems w
respect to symmetry and deformability. Some of the para
ters are held fixed throughout all cases, at the values us
Paper I for Ni(II), S 5 1 systems. For the nuclear sp

lectron spin distance,R, the value 255 pm is used. For
orrelation times,tD (corresponding to the distortional m-
ion), we use the value 4 ps, whiletR (corresponding to th
eorientational motion) is assigned a value of 60 ps.

TABLE 1
Dimension of the Supermatrix (DIM), Number of Non-zero
atrix Elements (NEL), and Corresponding Values of A and L for
arious S under the Condition of Large Static ZFS (DS 5 10 cm21)

and for u Þ 0

S A L DIM NEL

1 4 8 10,000 43 105

3/2 4 12 40,000 43 106

2 4 12 60,000 73 106

5/2 4 12 90,000 13 107

3 4 12 120,000 23 107

7/2 4 12 150,000 33 107
lectronicg-factor is set to 2.25 and is assumed to be isotropi
ns
the
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The azimuthal anglef is set to zero in all cases (according
test calculations, the effects of varying that angle are ra
small). The polar angleu has profound effects inS 5 1
systems (see paper I) when we vary it between the value
45°, and 90°, and this is discussed also forS 5 3/ 2 systems
The square of the magnitude of the static ZFS,DS, is defined a
the sum of the squared diagonal components of the static
tensor, for which we use the values 1 and 10 cm21. The relation
betweenDS and the tensor componentsDS andES is DS

2 5 2
3 DS

2

1 2ES
2. For the ratioES/DS we use the values 0, 0.1, and1

3 (the
maximum possible) so as to keep the magnitude constan
DS equal to 1 and 10 cm21 we havevDStR equal to 11 and 11
respectively (vDS corresponds toDS but in units of rad/s), an
from this we can immediately see that we are outside o
strong narrowing condition, or Redfield limit (correspondin
vDStR ! 1) with respect to the static ZFS. The magnitude o
transient ZFS,DT, is defined in analogy with the static ZF
Since we concentrate on the cylindrically symmetric trans
ZFS, we have here the relationDT

2 5 2
3 DT

2. We use the value
0.5 and 10 cm21 for the magnitudeDT in all cases. ForDT equa
o 0.5 and 10 cm21 we havevDTtD equal to 0.4 and 8, respe-
tively. From this we see that the former case is within
Redfield limit (corresponding tovDTtD ! 1), and the latter is i
the slow-motion regime with respect to the transient ZFS

We use the same terminology as in paper I, where
physical interpretation is given in terms of the different par
eters:slightly asymmetric complexwhenDS 5 1 cm21; asym-
metric complexwhenDS 5 10 cm21; weakly deformable com-
plex when DT 5 0.5 cm21; highly deformable complexwhen
DT 5 10 cm21; no rhombicitywhenES/DS 5 0; intermediate
rhombicity when ES/DS 5 0.1; large rhombicity when ES/
DS 5 1

3 ; coinciding axeswhenu 5 0 andf 5 0.
We now turn to the discussion of a series of different ca

In the first two sections we show the effects on the NM
profiles when we vary the parametersDS, ES/DS, DT, andu for
S 5 3/ 2. One of the sections deals with cases correspon
to the Redfield limit with respect to the transient ZFS (
DT 5 0.5 cm21). In the other section we cover a selection
cases within the slow-motion regime (i.e.,DT 5 10 cm21). We
should point out that in paper I we showed NMRD profiles
S 5 1 near the Redfield limit, which corresponds toDT 5 1
m21. The corresponding NMRD profiles in the case ofS 5

3/ 2, however, have characteristics very similar to those w
the Redfield limit. Thus, we choose not to show or dis
them. In the next section we discuss the features in the NM
profiles due to different values of the electron spin (S 5 1,
3/ 2, 2, 5/ 2, 3, and 7/2). We also show in the first section
within the Redfield limit) the calculated NMRD profile cor
sponding to the SBM theory using the same parameter v
as those used in the slow-motion calculations (note, how
that the static ZFS is absent in the SBM theory). In addition
have also tried to fit the SBM theory to two of the slow-mo
profiles (the curves corresponding toDS values of 1 and 1

21
c.cm and no rhombicity).
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351SLOW-MOTION THEORY IN HIGH-SPIN SYSTEMS
Before moving on to the examples, we wish to provid
qualitative picture of the field-dependence of the PRE
qualitative terms, the shape of a NMRD profile can be con
ered to arise from a series of Lorentzian curves, characte
by different “correlation times” and frequencies. The frequ
cies are related to the energy level structure. The “correl
times” are influenced (sometimes even dominated) by ele
spin relaxation and can be field-dependent. In the presen
static ZFS, we do not expect any field-dependence of the
at very low fields (weak Zeeman interaction): the change
the characteristic frequencies and “correlation times” of
system with the magnetic field are negligible. When the
increases and the product of a “correlation time” with
corresponding frequency becomes close to unity, the Lo
zian disperses and there is a decrease in the NMRD profi
rise in the NMRD profiles can take place if the “correlat
time” increases, which normally occurs because the ele
spin relaxation slows down at high field.

Cases for S5 3/2 within the Redfield Limit (DT 5 0.5 cm21)

Asymmetric and weakly deformable complexes.The
NMRD profiles in Fig. 2 (solid lines) show the effect
increasing the rhombicity in the static ZFS when the angleu is
zero for the case of asymmetric (large static ZFS), we
deformable (small transient ZFS) complexes.

The first feature that we wish to point out as distinguish
theS5 3/ 2 systems fromS5 1 is the occurrence of a “doub

lateau” in the low-field regime in the absence of rhombic
his “double plateau” structure was noticed by Westlundet al.

14) in their work on half-integer spins in rigid complexes
1

FIG. 2. NMRD profiles for asymmetric (DS 5 10 cm21), weakly deform-
ble (DT 5 0.5 cm21) complexes ofS 5 3/ 2 with increasing rhombicity in th
tatic ZFS (ES/DS) at the angleu 5 0°. No rhombicity in the transient ZF

(ET/DT 5 0) andf 5 0°. The dashed curve corresponds to the SBM th
sing the same parameters as for the slow-motion calculations, exce
tatic ZFS is absent. The dotted curve corresponds to a fitting of the
heory to the slow-motion profile whereES/DS 5 0 (obtained best-fit param-
eters are given in Table 2).
as then assigned to lifting the degeneracy in theu6 2& Kram-
a
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ers doublet byvS when the external magnetic field increas
The second important feature, different in the case ofS 5 3/ 2
andS 5 1 systems, concerns the rhombicity effect. Increa
the rhombicity in Fig. 2 has the effect of reducing the P
substantially in the low-field region (less than about 10 Te
but not as drastically as forS 5 1 complexes (cf. paper

here the rhombicity effect completely quenches the dip
ipole coupling and reduces the PRE practically to zero.
eason for the smaller effect in theS 5 3/ 2 case is that th

rhombic term in the static ZFS Hamiltonian only affects
axial splitting between the Kramers doublets in second o
and the Kramers doublets themselves remain degenerat
Fig. 1). We can also see that the rhombicity affects the
plateaus in a somewhat different way. The region to the
of the first plateau (about 0.1–10 Tesla) is more sensitive t
rhombicity effect than the region to the left. We have
following explanation of this observation. We can recall fr
the work onS 5 1 that the drastic effect of the rhombic
could be explained by the suppression of the unique qua
tion axis and the permanent magnetic moment of the ele
in the rhombic case. The situation forS5 3/ 2 is in this respec
more complicated. The quantization of the electron spin w
the u6 1

2& levels differs considerably from that within theu6 3
2&

levels (27). In the former case the quantization axis is orien
n the direction of the external magnetic field, which me
hat a quantization axis can still be defined irrespective o
ymmetry of the static ZFS, which is different from theS 5 1
ase (cf. paper I). The quantization in theu6 3

2& subsystem
behaves in the same way as for integer spins, which mean
the quantization axis is defined in the molecule-fixedPS frame
only for axially symmetric complexes. Now, in the rhom
case the states within one Kramers doublet are mixed
those of the other Kramers doublet. This means that the
tron spin Zeeman interaction affects the axial splitting, w
gives rise to a different field dependence of the PRE w
ES Þ 0 than whenES 5 0.

For comparison purposes, we also show in Fig. 2 (da
line) the calculated profile corresponding to the SBM the
using the same parameter values as for the slow-motion
culations, but without static ZFS since it is not included wi
the SBM theory. The difference in the profiles between
SBM and slow-motion theories is striking. The main reason
the poor agreement is that static ZFS has a very large impa
the electron spin relaxation, which is not taken into acc
within the SBM theory. This effect is discussed in ano
paper by us (58), where a low-field limiting theory in close
analytical form for high-spin systems has been developed
dotted curve in Fig. 2 corresponds to a fitting of the S
theory to the slow-motion profile whereES/DS 5 0. Clearly
the SBM theory is not even close in predicting the functio
form of the slow-motion profile, and the best-fit parame
which are given in Table 2, are badly off.

The NMRD profiles in Fig. 3 show the effect of increas

y
hat
M

the angleu when the rhombicity in the static ZFS is zero for the
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352 NILSSON AND KOWALEWSKI
case of asymmetric (large static ZFS), weakly deform
(small transient ZFS) complexes.

Increasing the angleu reduces the PRE in the low-fie
region in the same way as for systems ofS 5 1 (cf. paper I)
The reduction in the PRE is about the same in the w
low-field region and thus shows different characteristics in
NMRD profile than the rhombicity effect does (cf. Fig. 2). T
distinction is not very pronounced in the case ofS 5 1 (see
paper I), because for integer spin systems the sensitivity t
rhombicity effect is the same over the whole low-field reg
as opposed to what we discussed forS 5 3/ 2 above. Th
ensitivity to the angular effect is of course also the same
he whole low-field region, since we can regard this featu

scaling of the dipole–dipole coupling strength. For a ce
ange of stronger magnetic fields (about 10–20 Tesla) the
rend as forS 5 1 is present, namely, that the curve w
argest value of the PRE is that foru 5 45° (cf. paper I).

Increasing the angleu whenES Þ 0 (not shown) does n
eveal any new features, but reduces the PRE in the sam
s in Fig. 3. We have also tested the dependence of the P

he angleu for the case of large, rhombic static ZFS and sm
ransient ZFS. The variation of the PRE with that angle

TABLE 2
Nonlinear Least-Squares Fitting of the SBM Theory to the

alculated NMRD Profiles Obtained Using the Slow-Motion
heory in Figs. 2 and 4 (DS 5 10 cm21 and DS 5 1 cm21,
espectively) for ES/DS 5 0

Slow-motion

SBM

DS 5 10 cm21 DS 5 1 cm21

R (pm) 255 256 252
tR (ps) 60 76 52
tD (ps) 4 1.33 1025 2.6

T (cm21) 0.5 0.513 1023 0.34
s — 0.30398 0.09915

Note.The symbols is the relative standard deviation of the fit.

FIG. 3. NMRD profiles for asymmetric (DS 5 10 cm21), weakly deform-
ble (DT 5 0.5 cm21) complexes ofS 5 3/ 2 with increasing angleu (in

degrees) at the rhombicityES/DS 5 0. No rhombicity in the transient ZF

i(ET/DT 5 0) andf 5 0°.
le
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limited and is not shown. In the remainder of this section
will only discuss the effect of the angleu for ES 5 0.

Slightly asymmetric and weakly deformable comple
The NMRD profiles in Fig. 4 (solid lines) show the effect
increasing the rhombicity in the static ZFS when the angleu is
zero for the case of slightly asymmetric (small static ZF
weakly deformable (small transient ZFS) complexes.

The NMRD profiles in Fig. 4 are rather different from tho
in Fig. 2, where the magnitude of the static ZFS is 10 ti
larger. First, the dispersion in Fig. 2 at about 10 Tesla is sh
to about 1 Tesla in Fig. 4, with the consequence that the
dispersion and the second plateau (both counted from the
which were clearly distinguished in Fig. 2, are practic
absent in Fig. 4. In fact, the two dispersions shown in Fig. 4
almost superimposed on each other, resulting in one rath
dispersion. Another interesting difference between the cu
in Fig. 4 and those in Fig. 2 is the large reduction in the P
(more than 60%) at very low magnetic fields for the lowDS

compared to the highDS. This is also very different compar
to S 5 1 systems (see paper I), where the PRE values
practically the same at low fields forDS values of 1 and 1
cm21. However, a small maximum appeared just before
dispersion for the larger value of the static ZFS in the cas
S 5 1, which is not present inS 5 3/ 2 systems. W
entatively explain these differences betweenS 5 1 andS 5
/ 2 systems by differences in the field dependence of ele
pin relaxation. A more thorough analysis of the difference
lectron spin relaxation effects is discussed in another pap
s (58) on a novel low-field, Redfield-limit theory of PRE.
Increasing the rhombicity has the effect of reducing the

t low magnetic fields, but not at all as much as in Fig. 2.

FIG. 4. NMRD profiles for slightly asymmetric (DS 5 1 cm21), weakly
eformable (DT 5 0.5 cm21) complexes ofS5 3/ 2 with increasing rhombicit

n the static ZFS (ES/DS) at the angleu 5 0°. No rhombicity in the transie
ZFS (ET/DT 5 0) andf 5 0°. The dashed curve corresponds to the S
heory using the same parameters as for the slow-motion calculations,
hat static ZFS is absent. The dotted curve corresponds to a fitting of the
heory to the slow-motion profile whereES/DS 5 0 (obtained best-fit param-
eters are given in Table 2).
s so especially in the region just to the left of the dispersion,
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353SLOW-MOTION THEORY IN HIGH-SPIN SYSTEMS
which was particularly sensitive to the rhombicity for la
static ZFS. The reason is the same as that discussed
namely, that the second plateau is absent because the s
dispersion is shifted to the left.

The profile in Fig. 4 corresponding to the SBM the
(dashed line) agrees poorly with the slow-motion profile e
for a smaller value of the static ZFS parameterDS (here, 1
cm21 as compared to 10 cm21 used in the curves in Fig. 2
Note that the SBM curves in Figs. 2 and 4 are the same
the only difference in the parameter values is related
change in the magnitude of the static ZFS. The fitting of
SBM theory to the slow-motion profile (ES/DS 5 0) improves
somewhat compared to that for a larger value ofDS in Fig. 2,
but the shape of the curve (dotted line in Fig. 4) and the be
parameter values (see Table 2) are still rather different from
profile and parameter values corresponding to the slow-m
theory.

The NMRD profiles in Fig. 5 show the effect of increas
the angleu when the rhombicity in the static ZFS is zero for
case of slightly asymmetric (small static ZFS), weakly defo
able (small transient ZFS) complexes.

Increasing the angleu reduces the PRE to about the sa
extent as for large static ZFS, as shown in Fig. 3. The ran
magnetic fields where the value of PRE is the largest foru 5
45° has increased compared with Fig. 3. In Fig. 5 it ran
from about 1 to 20 Tesla, whereas in Fig. 3 the range was
10–20 Tesla. InS 5 1 systems the opposite trend is true:
case of large static ZFS has the widest range of magnetic
where the NMRD profile foru 5 45° is above theu 5 0°
profile (cf. paper I). The physical reason for this differe
between theS 5 3/ 2 and S 5 1 systems is also he
tentatively related to the difference in electron spin relaxa
and its variation with transition frequencies asDS changes.

Cases for S5 3/2 within the Slow-Motion Regime
(DT 5 10 cm21)

Asymmetric and highly deformable complexes.We now

FIG. 5. NMRD profiles for slightly asymmetric (DS 5 1 cm21), weakly
eformable (DT 5 0.5 cm21) complexes ofS5 3/ 2 with increasing angleu (in
egrees) at the rhombicityES/DS 5 0. No rhombicity in the transient ZF

(ET/DT 5 0) andf 5 0°.
iscuss complexes with large magnitudes of the transient ZF
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which correspond to slow-motion cases. In the slow-mo
regime the electron spin lineshapes are combinations of
nitely many Lorentzians, with the consequence that we
faced with a broad spectrum of electron spin relaxation ti
This feature, which we will refer to as theslow-motion effec
results in very rapid “effective” electron spin relaxation
should be stressed that NMRD profiles in the slow-mo
regime showing the effects due to either the variation in
rhombicity in the static ZFS or the variation of the angleu have
never been treated before, and they cannot be handle
simple theories such as the SBM theory, the Florence mod
the approach by Sharp.

The NMRD profiles in Fig. 6 show the effect of increas
the rhombicity in the static ZFS when the angleu is zero for the
case of asymmetric (large static ZRS), highly deform
(large transient ZFS) complexes.

Increasing the rhombicity reduces the PRE, but not as m
edly as for a small magnitude of the transient ZFS (cf. Fig
However, compared toS 5 1 systems, which are practica
independent of the rhombicity in the static ZFS in the sl
motion regime, the change in PRE inS 5 3/ 2 systems is no

egligible.
The NMRD profiles in Fig. 7 show the effect of increas

he angleu when the rhombicity in the static ZFS is zero for
case of asymmetric (large static ZFS), highly deformable (l
transient ZFS) complexes.

Increasing the angleu reduces the PRE very much in
same way as in Fig. 3, but not to the same extent. Analo
to the rhombicity effect in Fig. 6, the PRE is much m
sensitive to a change in the angleu for S 5 3/ 2 complexe
than for those withS5 1, in which it is almostu-independen
The physical reason for the differences between theS 5 3/ 2
and S 5 1 cases, concerning both theu dependence and t
rhombicity effect in the static ZFS, is related to the sl
motion effect. Thus, the “effective” electron spin relaxatio
much more rapid inS 5 1 than inS 5 3/ 2 systems, becau
of the Kramers degeneracy in the latter.

FIG. 6. NMRD profiles for asymmetric (DS 5 10 cm21), highly deform-
able (DT 5 10 cm21) complexes ofS 5 3/ 2 with increasing rhombicity in th
static ZFS (ES/DS) at the angleu 5 0°. No rhombicity in the transient ZF

S,(ET/DT 5 0) andf 5 0°.
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354 NILSSON AND KOWALEWSKI
The effect on the PRE of changing either the rhombicit
the static ZFS or the polar angleu for a smallDS is negligible
herefore we do not show any NMRD profiles for these ca
he PRE is particularly insensitive to the rhombicity ef
here the curves of differentES/DS (not shown) coincide. W

noted similar features forS 5 1 in paper I. The following
physical picture of this phenomenon can be invoked. Sinc
transient ZFS momentarily dominates over the static ZFS
energy-level structure can at each instant be consider
being determined by the transient rather than the static pa
this picture, the rhombicity in the static ZFS is not expecte
significantly affect the PRE.

Comparison of Different Electron Spins
(S 5 1, 3/2, 2, 5/2, 3, and 7/2)

In this section, we discuss the differences between
lexes of differentS values, something which has been d
arlier by Sharp for some cases under slow-rotation cond
31). Here we study cases of more rapid reorientation and
xtend the analysis to cover cases with a static ZFS of rho
ymmetry. In another paper by Sharp and co-workers (27), they
id in fact discuss the rhombicity effect for differentS values
riefly, but this was again for slowly rotating complexes,

hey did not show any NMRD profiles illustrating this featu
n order to compare the characteristics in the NMRD pro
or different S in a proper way, we use a reduced spec
ensity (RSD)K̃ 1,1

DD(2v I), which we define in the followin
ay:

K̃ 1,1
DD~2vI! 5

T1I
21

~4/3!~CDD! 2S~S1 1!tR
. [7]

The division byS(S1 1) in Eq. [7] means that the same fac
included inT1I

21 (cf. Eq. [5]) will cancel; thus, only difference
inherent in the electron spin system (e.g., relaxation

FIG. 7. NMRD profiles for asymmetric (DS 5 10 cm21), highly deform-
able (DT 5 10 cm21) complexes ofS 5 3/ 2 with increasing angleu (in
degrees) at the rhombicityES/DS 5 0. No rhombicity in the transient ZF
(ET/DT 5 0) andf 5 0°.
energy-level effects) for variousS are shown in the profiles.
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The maximum value the RSD can attain at low field is un
when the electron relaxation effects are absent and the
modulation of the DD interaction originates from the comp
reorientation.

The NMRD profiles in Fig. 8 show the effect of increas
the electron spinS for the case of slightly asymmetric (sm
tatic ZFS), weakly deformable (small transient ZFS) c
lexes when the symmetry of the static ZFS is axial (Fig.
nd rhombic (Fig. 8b), and for coinciding axes (u 5 f 5 0).
If we compare the NMRD profiles in Fig. 8a of integer s

airwise with those of half-integer spin,S 5 1 with S 5 3/ 2,
S 5 2 with S 5 5/ 2, andS 5 3 with S 5 7/ 2, we see tha
the low-field plateaus for half-integer spins are higher exce
the last case, for which the low-field plateaus coincide.
note that, with the particular choice of parameters at hand
rapid electron spin relaxation phenomena reduce the effic
of the PRE at low field by about 65% forS 5 3/ 2 compare
to about 75% for the highest spins. The details of these ele
spin relaxation effects on the PRE will be elaborated in
forthcoming work on the low-field, Redfield-limit theory (58).
Here, we only note that in the simple BM approach the elec
spin relaxation rates are expected to increase monoton
with increasingS. This clearly shows that this Zeeman-lim
theory is not appropriate for the analysis of high-spin sys
in the ZFS-dominated regime. The order of the low-field
teaus within the integer and half-integer spin systems is
same; that is, the plateau is reduced whenS increases. How

FIG. 8. NMRD profiles for slightly asymmetric (DS 5 1 cm21), weakly
eformable (DT 5 0.5 cm21) complexes with increasing electron spinS at (a)

no rhombicity in the static ZFS (ES/DS 5 0), and (b) with rhombicity in th
tatic ZFS (ES/DS 5 1/3). The angleu 5 0° andf 5 0°. Reduced spectr

densities have been used rather than PRE in order to compare NMRD p
of different S. Curves with integer spin are displayed as solid lines, whe

those of half-integer spin are shown as dotted lines.
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ever, the reduction of the PRE is larger in the case of
integer spin systems than in the case of integer spin sys

In Fig. 8b we show NMRD profiles for variousS in the cas
of a rhombic static ZFS (ES/DS 5 1/3). The RSDs are reduc
in the low-field region for all spin systems compared to
case of an axial static ZFS (cf. Fig. 8a). The RSD for integS
are reduced more drastically than for half-integer spin syst
because of the Kramers degeneracy in the latter. We disc
this phenomenon in a previous section in the case ofS 5 3/ 2
for electron spin relaxation within the Redfield limit, and
applies to all half-integer spin systems. The order of the
field plateaus of the half-integer spin systems in the rho
case remains the same as in the axial case (cf. Figs. 8a an
However, for the integer spin systems the order is reve
that is,S 5 1 has the lowest PRE andS 5 3 the highest. Th
explanation for this is related to the splitting of the two low
energy levels (see Figs. 1a, 1b, and 1c). This splitting bec
rather small forS 5 2 andS 5 3 in the case of a rhombic
compared to an axial static ZFS. This reduction in the spli
is not as dramatic in the case ofS5 1. Increasing this splittin
will produce a reduction in the RSD in a similar way as for
splitting of the non-Kramers doubletu61&. Thus, since th
splitting increases in going fromS5 3 toS5 1, the RSD wil
be reduced, which is seen in Fig. 8b.

CONCLUSIONS

We have shown NMRD profiles where we can investi
the effect on the PRE of symmetry-breaking properties
particular for S 5 3/ 2. We have discussed the differen

etweenS 5 3/ 2 andS 5 1 systems concerning these effe
We find that the rhombicity effect in the static ZFS reduces
PRE substantially, but not as drastically as forS 5 1 com-
plexes, due to the Kramers degeneracy inS 5 3/ 2 systems
The consequence of the Kramers degeneracy is that the
bic termES only produces a second-order contribution to
axial splitting, which in turn providesS5 3/ 2 complexes wit
a slower electron spin relaxation than forS 5 1. We have als
seen that NMRD profiles are sensitive to the rhombicity e
also in the slow-motion regime, which was not the case forS5
1 (see paper I). The effect of changing the angleu is rathe
similar for S 5 3/ 2 and S 5 1 complexes, except in th
low-motion regime where the former show a larger chan
he PRE.

NMRD profiles corresponding to the SBM theory have
een shown and compared with the slow-motion profiles

he disagreement is very pronounced. Even if we fit the S
heory to the calculated slow-motion curves the fitted curve
ot have the same functional form as those based o
low-motion theory. In addition, the best-fit parameter va
iffer substantially from those used in the slow-motion ca

ation. Clearly, the SBM theory cannot mimic the low a
ntermediate magnetic field parts of the NMRD profiles

ow-symmetry complexes when static ZFS is present. Th
lf-
s.
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ain reason for this is that the BM theory breaks down bec
he strong influence of the static ZFS on the electron
elaxation is not taken into account (see the other paper
58)).

We have also investigated the effect on the PRE, or rath
he RSD, of changing the electron spinS. We have found tha
nteger spin systems behave differently than half-integer
ems, due to the Kramers degeneracy in the latter, which
greement with what Sharp has discussed in earlier p
27, 31). The order of the low-field plateaus in the case o
xial static ZFS is the same for integer as for half-integer
ystems; that is, the RSD is reduced asS increases. Sha
redicted a somewhat more pronounced distinction bet

nteger and half-integer spin systems in the axial case.
alue for DS that we have chosen (1 cm21) in Fig. 8 only

displays a pronounced distinction betweenS 5 3/ 2 and the
other spin quantum numbers. If we had chosen a larger v
of DS, then the profiles of the half-integer spin systems w
have been grouped together on a somewhat higher leve
those with integer spin. Clearly, the ordering of the low-fi
plateaus depends strongly on the magnitude of the static
which we tentatively trace to the electron spin relaxation p
erties ofS . 1 systems.

In the case of a rhombic static ZFS, the order of the low-
plateaus for integer spin systems is reversed compared
axial case. This phenomenon is related to the splitting bet
the two lowest energy levels, which increases asS decrease

nd hence produces a smaller value of the RSD. For
nteger spin systems the order of the low-field plateaus rem
he same if the symmetry in the static ZFS is changed.

The present paper, together with paper I, provides a
ange of cases of calculated NMRD profiles covering fea
f integer spin, withS 5 1 as an example (paper I), and n
lso half-integer spin, exemplified withS 5 3/ 2. Some case
f S . 3/ 2 are also discussed in the present paper. Alth

his set of NMRD profiles is not complete, it covers practic
ost of the cases where zero-field splitting is domina
implified models may be tested against these NMRD pro
nd may be modified accordingly. One example of this stra

s the successful cooperation between the authors an
lorence group that resulted in an improved version of
lorence model with very good agreement in the slow-rota

imit for the case ofS 5 1 (35).

APPENDIX: SUPERMATRIX ELEMENTS

The supermatrix elements of the static and transient
Liouvillians, +ZFS

S and+ZFS
S , are given here, using the orthon-

mal basis operators defined in Appendix A of paper I. Th
supermatrix elements are valid for an arbitrary value oS,
whereas those in paper I were restricted to the case ofS 5 1.
The supermatrix elements of the other superoperators

etained in the lattice Liouvillian+L are exactly the same as
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those given in Appendix B in paper I and are therefore
given here.

~ A9B9C9u~L9K9M9u~S9s9u+ ZFS
S uSs!uLKM!uABC!

5 dA9AdB9BdC9C~21! s1K92M9 3 Î5~~21! S9121S 2 1!

3 Î~2L9 1 1!~2L 1 1!~2S9 1 1!~2S 1 1!30

~2S1 3!~2S1 1!~S1 1!~2S2 1!S

3 ~ f 0
2~PS!D 0,K92K

2 @aPSM, bPSM, 0#

1 f u2u
2~PS!~D 2,K92K

2 @aPSM, bPSM, 0#

1 D 22,K92K
2 @aPSM, bPSM, 0#!!

3 S L9 2 L
2K9 K9 2 K KDS L9 2 L

2M9 M9 2 M MD
3 S S9 2 S

2s9 M 2 M9 sDHS9 2 S
S S SJ , [A.1]

~ A9B9C9u~L9K9M9u~S9s9u+ ZFS
T uSs!uLKM!uABC!

5 ~21! s1B91K92C92M9h uB92Bu
2~PT! 3 Î5~~21! S9121S 2 1!

3 Î ~2A9 1 1!~2A 1 1!~2L9 1 1!~2L 1 1!
3 ~2S9 1 1!~2S 1 1!30

~2S1 3!~2S1 1!~S1 1!~2S2 1!S

3 S A9 2 A
2B9 B9 2 B BDS A9 2 A

2C9 C9 2 C CD
3 S L9 2 L

2K9 C9 2 C KDS L9 2 L
2M9 M9 2 M MD

3 S S9 2 S
2s9 M 2 M9 sDHS9 2 S

S S SJ , [A.2]

where

HS9 2 S
S S SJ

in Eqs. [A.1] and [A.2] is a 6-j symbol (59). If the Liouville
superoperator contains electron spin operators of rank tw
in Eqs. [A.1] and [A.2], then there is a general selection

uS9 2 Su 5 1. [A.3]

his selection rule originates from the inversion conjuga
ymmetry (60, 61) and reduces the number of matrix eleme
hat are non-zero.
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